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Summary

Human activities are causing a global proliferation of

cyanobacterial harmful algal blooms (CHABs), yet we

have limited understanding of how these events

affect freshwater bacterial communities. Using week-

ly data from western Lake Erie in 2014, we

investigated how the cyanobacterial community var-

ied over space and time, and whether the bloom

affected non-cyanobacterial (nc-bacterial) diversity

and composition. Cyanobacterial community compo-

sition fluctuated dynamically during the bloom, but

was dominated by Microcystis and Synechococcus

OTUs. The bloom’s progression revealed potential

impacts to nc-bacterial diversity. Nc-bacterial even-

ness displayed linear, unimodal, or no response to

algal pigment levels, depending on the taxonomic

group. In addition, the bloom coincided with a large

shift in nc-bacterial community composition. These

shifts could be partitioned into components pre-

dicted by pH, chlorophyll a, temperature, and water

mass movements. Actinobacteria OTUs showed

particularly strong correlations to bloom dynamics.

AcI-C OTUs became more abundant, while acI-A and

acI-B OTUs declined during the bloom, providing evi-

dence of niche partitioning at the sub-clade level.

Thus, our observations in western Lake Erie support

a link between CHABs and disturbances to bacterial

community diversity and composition. Additionally,

the short recovery of many taxa after the bloom indi-

cates that bacterial communities may exhibit

resilience to CHABs.

Introduction

Cyanobacterial harmful algal blooms (CHABs) are a major

threat to freshwater ecosystems globally and are primarily

driven by human activities (Paerl and Huisman, 2009;

O’Neil et al., 2012; Michalak et al., 2013; Visser et al.,

2016). CHABs impact ecosystems and human health by

diminishing habitat for plants and animals, disrupting food

web dynamics, creating hypoxic zones, and producing

toxins (Carmichael et al., 2001; Conroy et al., 2005;

Hern�andez et al., 2009; Miller et al., 2010; Backer et al.,

2013). Despite a large body of CHAB research (Paerl and

Otten, 2013; Steffen et al., 2014; Davis and Gobler, 2016),

relatively few studies have examined this phenomenon

from a microbial ecology perspective that includes the

community ecology of dominant cyanobacterial species as

well as associations between cyanobacterial populations

and other bacterial populations, which we will refer to as

‘nc-bacterial’.

CHAB cyanobacterial diversity can vary both spatially

and temporally within a lake. For example, a year-long

study from Yanga Lake (Australia) found a succession of

cyanobacterial consortia through time, which was deter-

mined by seasonal biotic and abiotic fluxes (Woodhouse

et al., 2015). In another example, a study from western

Lake Erie (USA) found that Microcystis dominated in low

P:N locations, while Anabaena and Planktothrix dominated

in high P:N locations, because Microcystis was better able

to scavenge phosphorus (Harke et al., 2016a). While prior

studies have investigated some of the spatiotemporal

trends of CHAB communities, we lack insight into how
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these communities vary on highly resolved time scales.

Increased temporal resolution of CHAB community data-

sets may elucidate additional ecological associations

between CHAB species that are key to understanding

bloom ecology.

Another important aspect of CHAB ecology is the extent

to which these events impact nc-bacterial communities.

We currently have poor understanding of if and how

CHABs influence nc-bacterial richness and evenness

(alpha diversity). Field studies from Lake Taihu (China)

found no effect on bacterial alpha diversity (Tang et al.,

2010; Wilhelm et al., 2011), while a study from Yanga Lake

found that diversity increased with cyanobacterial biovio-

lume (Woodhouse et al., 2015). These conflicting results

could possibly be explained by differential responses

between bacterial groups. In a study using pond meso-

cosms, the richness of bacterial groups were shown to

have strikingly different responses to experimentally

manipulated primary productivity measured by chl a

(Horner-Devine et al., 2003). Specifically, Alphaproteobac-

teria exhibited a negative unimodal relationship,

Bacteroidetes exhibited a positive unimodal relationship,

and Betaproteobacteria exhibited no relationship to chl a

concentrations. Therefore, analysis within taxonomic

groups may help clarify the influence of CHABs on nc-

bacterial alpha diversity.

Similarly, CHABs are known to influence the composition

of bacterial communities, but again, prior studies have

reported conflicting results. A study from Lake Taihu found

that bacteria attached to organic aggregates were different

between two sites with differing chl a concentrations (Tang

et al., 2010), but they also reported strong influences of

co-varying factors such as temperature, oxygen, turbidity,

and inorganic nutrients. Meanwhile, a study from Yanga

Lake reported that bacterial community composition was

influenced by pH, temperature, oxygen, and conductivity

during a CHAB (Woodhouse et al., 2015). Therefore, the

relative impacts of CHABs versus abiotic factors on nc-

bacterial community composition are still unclear.

To address these outstanding questions in CHAB micro-

bial ecology, we investigated spatiotemporal dynamics of

cyanobacterial populations, as well as changes to nc-

bacterial alpha diversity and composition during the 2014

western Lake Erie CHAB. Lake Erie is the twelfth largest

freshwater lake on Earth by surface area (Ohio Depart-

ment of Natural Resources). It also provides essential

ecosystem services by supporting a $1 billion USD fishing

economy and supplying drinking water to over 11 million

people (Ohio Department of Natural Resources; Bingham

et al., 2015). The CHAB in 2014 is of particular relevance,

because it led to the drinking water crisis in Toledo, Ohio

(Tanber, 2014). Insights into freshwater bacterial communi-

ty ecology during CHAB events can point us towards

possible interactions between cyanobacterial species that

govern CHAB development and termination, and it can

also inform predictions of nc-bacterially-mediated ecosys-

tem processes during these high impact disturbances.

Results and discussion

Bloom diversity, toxicity, and ecology

A CHAB occurred in western Lake Erie between late July

and late October of 2014, characterized by elevated algal

pigments (chl a and phycocyanin) and elevated particulate

microcystin cyanotoxins (Fig. 1B). We observed the bloom

at three sites: the two nearshore sites, situated near the

Maumee River, had higher median chl a concentrations

than the offshore site (Fig. 1A; Nearshore1 median: 18.5,

Nearshore2: 13.72, Offshore median: 5.86). However, the

range of pigment values at each site was large so on cer-

tain dates, e.g., the first August time point (Aug. 4) and first

and second September time points (Sept. 2, Sept. 8), the

offshore site had similarly high levels as nearshore sites. In

later analyses, we leverage these temporal differences in

bloom intensity between nearshore and offshore sites to

model variation in nc-bacterial composition associated with

the bloom.

Chl a and phycocyanin concentrations measured at the

same site and date were highly correlated (p<0.001,

Spearman’s rho 5 0.793). Correlations between time-series

can result in spurious results (Johansen, 2007), but visual

inspection indicated that the two variables were qualitatively

correlated (Fig. 1B). Since chl a is produced by most phyto-

plankton, but phycocyanin is predominantly produced by

Cyanobacteria, this analysis suggests that Cyanobacteria

dominated the bloom dynamics. However, these data do

not preclude the presence of eukaryotic phytoplankton spe-

cies. In fact, our universal 16S primers picked up numerous

chloroplast reads, suggesting that eukaryotic species were

present. Eukaryotic algae were not the focus of this study,

so they were removed from the dataset.

Particulate microcystin toxin was correlated with phyco-

cyanin concentrations (p<0.001, Spearman’s

rho 5 0.836), but this relationship differed qualitatively

between early and late bloom periods (Fig. 1B). From mid-

July to late August, elevated phycocyanin corresponded to

high levels of particulate microcystin. Then from early Sep-

tember to October, elevated phycocyanin corresponded to

lower toxin concentrations. Despite this shift in toxicity,

there was a single dominant Microcystis OTU present in

the community (Fig. 2B). These data can be explained by

the fact that there are numerous Microcystis strains that

have more than 97% similarity in their full-length 16S rRNA

gene, yet differ with respect to toxigenic potential and other

ecological traits (Harke et al., 2016b).

The cyanobacterial community was a diverse community

of 11 non-rare OTUs (mean relative abundance> 0.05%)

assigned to Synechococcus, Microcystis, unclassified
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genera, Pseudanabaena, and Anabaena (in order of mean

relative abundance) (Fig. 2A and B). Prior studies of

CHABs on Lake Erie have primarily used microscopy to

identify cyanobacterial species, and have reported that

Microcystis was the heavily dominant cyanobacterium by

biomass (Bridgeman et al., 2013; Michalak et al., 2013;

Steffen et al., 2014; Harke et al., 2016a). In contrast, our

molecular data indicates that the 2014 CHAB consisted of

a more diverse cyanobacterial community that varied highly

in composition over space and time. Prior to the onset of

the Microcystis bloom Synechococcus rose to high abun-

dance at all three sites, and remained an abundant genus

(by gene copy abundance) throughout the entirety of the

bloom. However, once Microcystis rose to abundance (3-4

weeks after Synechococcus), it dominated at the

nearshore stations, while Synechococcus continued to

dominate at the offshore station (Fig. 2A).

Only a few studies have discussed the abundance and

importance of Synechococcus in Lake Erie’s CHABs

(Ouellette et al., 2006; Gobler et al., 2008; Davis et al.,

2012). This discrepancy could be related to either a prede-

fined focus on Microcystis (e.g., using Microcystis specific

primers), or a bias against picobacteria during sampling

and morphological identification (e.g., colony-only sam-

pling or a focus on the higher biomass per cell of colonial

and filamentous Cyanobacteria). However, Synechococ-

cus species likely co-occur with Microcystis in several

systems, because a molecular-based study on Lake Taihu

found that Synechococcus was abundant during Microcys-

tis blooms (Ye et al., 2011). We observed both positive and

negative correlations between Microcystis and

Synechococcus OTUs in our study, though only one corre-

lation between Microcystis and Synechococcus OTU 177

was significant (Supporting Information Table S1). Still, the

persistent dominance of Synechococcus at the offshore

station, where Microcystis abundance was generally lower,

suggests that there may be a competitive or antagonistic

interaction between these taxa. In fact, microcystin has

been shown to inhibit the growth of some Synechococcus

species (Hu et al., 2004). Future experimental studies

might address how ecological interactions with Microcystis

vary among different Synechococcus taxa.

Pseudanabaena was the third most abundant genus,

and like Microcystis, we only detected one abundant OTU

(Fig. 2B). Pseudanabaena co-occurred with Microcystis

throughout much of the bloom, and the relative abundan-

ces of the two were highly correlated (Supporting

Information Table S1). Previous studies have shown that

Pseudanabaena can be epiphytic on Microcystis colonies

(Agha et al., 2016). Therefore it is not surprising that these

two genera would be correlated. Furthermore, some Pseu-

danabaena strains have the genetic potential to produce

cyanotoxins (Rangel et al., 2014); thus co-occurrence of

Pseudanabaena and Microcystis may have repercussions

for CHAB toxicity.

Finally, observed dynamics of Anabaena and Microcys-

tis support prior hypotheses addressing the competitive

advantages of either genus under different nutrient

regimes. Anabaena and Microcystis were not significantly

anti-correlated (Supporting Information Table S1), but their

opposing relationship was qualitatively apparent. For

example, Anabaena was mostly absent from the Erie basin

Fig. 1. A. Map of sampling locations in western Lake Erie.

B. Photosynthetic pigment, toxin, and relative abundance of Cyanobacteria reads across sites and sampling dates. M denotes a missing

sample.
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in the first stage of the bloom when phosphorus concentra-

tions were low (Fig. 2A; Supporting Information Fig. S1).

However, in late summer, when phosphorus levels increased

and dissolved inorganic nitrogen concentrations decreased,

Anabaena reached its peak level relative to Microcystis, par-

ticularly at the offshore site. These patterns are consistent

with previous findings that Microcystis upregulates P-

scavenging genes and outcompetes Anabaena in P-limited

environments (Gobler et al., 2016; Harke et al., 2016a).

One major caveat to the observations described above,

as well as correlations made between taxa in the rest of

this paper, is that these associations are biased in several

ways by extraction protocol, primers, and the composition-

al nature of sequence data (Aitchison, 1982; Brooks et al.,

2015). The universal primer set we used is known to be

biased against SAR11, an Alphaproteobacteria common in

marine environments, which has a sister lineage (LD12)

that is ubiquitous in freshwater systems (Apprill et al.,

2015). Furthermore, a correlation does not imply causality

or even interaction. Still, these observations can be quite

informative when considered in the context of other obser-

vational and laboratory data.

In summary, the cyanobacterial community in western

Lake Erie’s 2014 CHAB was diverse and highly dynam-

ic at the OTU level. The community was spatially

heterogeneous, such that Synechococcus and Ana-

baena were more abundant offshore and Microcystis

dominated near to shore. In addition, weekly temporal

sampling revealed putative associations between cya-

nobacterial taxa, which could form the basis for more

specific experimental studies examining pairwise eco-

logical interactions.

Fig. 2. Cyanobacterial spatial and temporal dynamics during the western Lake Erie CHAB.

A. Cyanobacterial genus composition across stations and timepoints. Relative abundance is measured with respect to the total bacterial

community.

B. Cyanobacterial OTU temporal dynamics. OTUs with mean relative abundance> 0.0001 are depicted. Relative abundance is measured with

respect to the total bacterial community.
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Seasonal and bloom-associated patterns in nc-bacterial

alpha diversity

Nc-bacterial richness and evenness exhibited differing

temporal dynamics during the bloom cycle. With the

exception of a few highly variable samples in October,

observed nc-bacterial richness increased throughout the

season (Fig. 3A). In contrast, nc-bacterial evenness, mea-

sured by Simpson’s E, decreased until October (Fig. 3E). It

should be noted that rarefaction curves of OTU richness

rarely reach saturation in diverse microbial environments,

so richness estimates are highly dependent on sequencing

depth. Therefore, we reported our estimates as observed

richness (out of 15,631 sequences) rather than true rich-

ness. Still, our richness estimates show consistent trends

with other studies that have observed increasing bacterial

diversity from the spring to early fall in freshwater systems

(Shade et al., 2007; Kara et al., 2012) and in the surface

waters of marine systems (Cram et al., 2015).

We did not observe a relationship between algal pig-

ments and nc-bacterial richness (Fig. 3B–D, Supporting

Information Fig. S2); however, we did find relationships

between algal pigments and the evenness of certain taxo-

nomic groups (Fig. 3F–H, Supporting Information Fig. S2).

Alphaproteobacteria evenness exhibited a unimodal

response to log chl a, while Bacteroidetes evenness

exhibited a linear response. The evenness of Betaproteo-

bacteria was also slightly positively correlated with log chl

a, though the association was not strong enough to be cer-

tain. However, the Inverse Simpson Index, which

combines both richness and evenness, showed a much

stronger response for linking log chl a to Betaproteobacte-

ria (p<0.001, R2 5 0.328). Therefore, this analysis is quite

sensitive to the measure of alpha diversity used.

In general, our data suggest that the bloom influences

bacterial evenness more than bacterial richness. We

hypothesize that increases in the evenness of dominant

bacterial groups during the CHAB could be related to an

increase in habitat complexity (colony-attached communi-

ties) or substrate complexity (carbon compounds from a

diverse algal community), which would allow rare or dor-

mant taxa to become relatively more abundant. While

bloom specialists might be expected to dominate during

this period, rapid weekly shifts in algal abundance (inferred

from changes in pigments) and cyanobacterial composition

could inhibit this, thereby promoting a more even

community.

In addition to chl a, we investigated the relationship of

nc-bacterial richness and evenness with other measure-

ments of the bloom. Lake pH can increase to very high

levels during cyanobacterial blooms due to heightened

primary productivity (L�opez-Archilla et al., 2004), because

photosynthesis fixes carbon and displaces the equilibrium

of carbon dioxide/bicarbonate/carbonate that would

otherwise buffer a freshwater system. Compared with chl

a, pH showed very similar and slightly stronger trends

with respect to evenness of Alphaproteobacteria and

Betaproteobacteria (Supporting Information Fig. S3). Chl

a is often used as a proxy for primary productivity

(Downing and Leibold, 2002; Horner-Devine et al., 2003;

Smith, 2007), but light, nutrients, and grazing rates can

decouple the two by affecting per cell concentrations of

chlorophyll or by reducing the standing stock of phyto-

plankton (Behrenfeld et al., 2005). Lake pH can be

affected by geochemical conditions e.g., salt concentra-

tions and presence of mineral carbonates, but there is no

evidence for these conditions changing rapidly in western

Lake Erie during the summer season. Therefore, pH

might be a better proxy for primary productivity than chl

a in this system, and would consequently correspond

more strongly to bacterial diversity if such a relationship

exists. Phycocyanin showed similar trends to nc-bacterial

evenness (Supporting Information Fig. S3), but the rela-

tionships were weaker, which suggests that nc-bacterial

evenness is more affected by the total algal community

than solely Cyanobacteria.

Our data, supporting a link between the bloom and

evenness of certain bacterial taxa, are consistent with

experimental evidence that primary productivity affects

alpha diversity of bacterial groups in different ways

(Horner-Devine et al., 2003). However, the actual relation-

ships we observed were quite distinct for each taxonomic

group. Specifically, Alphaproteobacteria exhibited a U-

shaped response to chl a in a pond mesocosm study

(Horner-Devine et al., 2003), but our study shows the

inverse hump-shape. The mesocosm study found a hump-

shaped response for Betaproteobacteria, but we found a

positive linear trend. Discrepancies between these studies

could be due to differences in community composition, dif-

ferences in the range of chl a levels over which the

communities were sampled, or other environmental factors

that differ between a field and lab environment. Our results

also differ from other CHABs field studies that have found

no effect of the bloom on bacterial alpha diversity (Eiler

and Bertilsson, 2004; Woodhouse et al., 2015), though

these studies only examined total bacterial richness. In lieu

of our findings, future studies should examine both bacteri-

al richness and evenness, and should explore diversity

patterns within major taxonomic groups.

This study provides some initial data differentiating

between how annual cycles and bloom-associated trends

affect the richness and evenness of freshwater nc-

bacterial groups. Future studies that expand our observa-

tions across multiple years and cover the full annual range

of seasonal variation will further resolve the intertwined

effects of seasonality and CHABs growth dynamics on

bacterial alpha diversity.
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Fig. 3. Nc-bacterial alpha diversity trends.

A. Nc-bacterial observed richness trends over time.

B–D. Observed richness of Alphaproteobacteria, Bacteroidetes, and Betaproteobacteria with respect to log chl a concentrations.

E. Nc-bacterial evenness measured by Simpson’s E over time.

F–H. Evenness of Alphaproteobacteria, Bacteroidetes, and Betaproteobacteria with respect to chl a concentrations. Reported p-values

underwent FDR correction for multiple hypotheses. For plots of other bacterial groups and correlation to pH and phycocyanin see Supporting

Information Figs. S2 and S3.
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Influence of CHABs and abiotic seasonal factors on nc-

bacterial community composition

The nc-bacterial community exhibited large shifts in com-

position during the 2014 bloom cycle. The Bray-Curtis

dissimilarities between the first June samples and peak

bloom dates in August or September were 0.784, 0.812,

and 0.642 for nearshore1, nearshore2, and offshore

respectively. We expected that several biotic and abiotic

factors contributed to these fluctuations, so rather than

examining several factors independently, we used principal

coordinates to identify the major axes of variation within

the community. We then determined which variables corre-

sponded to change across each axis over time with linear

time-series models. In considering each principal coordi-

nate, we examined whether sample scores were similar

between nearshore and offshore sites. Abiotic seasonal

dynamics should influence all three stations similarly, while

the CHAB, if it has an effect, should influence the offshore

site differentially than the nearshore sites on dates with

large discrepancies in bloom intensity. We considered

three principal coordinates, because the third coordinate

was situated at an obvious inflection point of the scree plot

for relative variance explained by each axis (Supporting

Information Fig. S4).

The first principal coordinate (PC1) of Bray-Curtis sam-

ple dissimilarities explained 34.8% of variation in nc-

bacterial community composition across all samples. PC1

scores exhibited a hump-shaped response over time,

which was highly consistent for the two nearshore sites,

but showed differences between nearshore and offshore

sites in mid August and mid to late September (Fig. 4A).

These differences corresponded to dates when algal pig-

ments were considerably lower at the offshore station than

nearshore stations (Fig. 1B), suggesting that the bloom

could be an influencing factor. We attempted to model PC1

scores solely with environmental data, but we achieved

much better results when time was included as an addi-

tional covariate. The best model included time and pH,

though the model with time and chl a had a similar R2 val-

ue (Table 1). For the model including pH, residuals were

normal and did not exhibit autocorrelation (Supporting

Information Fig. S5), indicating that model assumptions

were met. Model cross-validation returned a low mean

squared error, indicating that the model was highly

predictive.

We posit that PC1 reflects changes in composition asso-

ciated with the bloom and other seasonal factors. pH and

chl a were the two strongest environmental predictors of

PC1, and they can both serve as measures of bloom inten-

sity. pH increases during blooms because algal

photosynthesis removes carbon dioxide from the water

and increases hydroxide ion concentration. In our sampling

season, pH reached exceedingly high levels for a lake (>9,

Supporting Information Fig. S2), which is indicative of very

high primary productivity in an otherwise well-buffered sys-

tem (L�opez-Archilla et al., 2004). Our model also suggests

that seasonal variation is important, because the model fit

improved considerably when time was added as a covari-

ate. Due to the limited interval of our study, it is difficult to

interpret the meaning of the time variable. We think it’s like-

ly that there is a sinusoidal seasonal trend, but it appears

as a linear trend during this four-month period.

There are multiple mechanisms by which an algal

bloom can affect bacterial community composition. A shift

from allochthonous to autochthonous dissolved organic

carbon was observed during this CHAB (Cory et al.,

2016), which may have influenced the relative abundance

of different taxa. Several other studies have documented

that bacterial communities respond to shifts in substrates

available within the dissolved organic carbon pool during

both freshwater and marine blooms (Lau et al., 2007;

Teeling et al., 2012; Yang et al., 2015). Alternatively, pH

is known to be a major influence on bacterial community

composition in soil (Lauber et al., 2009) and freshwater

systems (Lindstrom et al., 2005; Llir�os et al., 2014).

Therefore, the bloom may have actually influenced the

composition of nc-bacterial communities by changing the

lake’s pH. pH was found to be the most important factor

structuring bacterial communities across 15 North Euro-

pean lakes spanning the range of 5.5 to 8.7 (Lindstrom

et al., 2005), and in Tibetan lake sediments spanning

the range of 6.88 to 10.37 (Xiong et al., 2012). The pH

range in our study spanned from 7.9 to 9.3, which is

smaller than other studies, but may have covered criti-

cal thresholds. Importantly, the correlation of pH with

PC1 suggests that changes to community composition

were not driven solely by the presence of Cyanobacte-

ria or harmful cyanobacterial species, but rather by the

cumulative properties of the bloom, which would

include eukaryotic or non-harmful species. If this is

true, CHABs may not be particularly distinct disturban-

ces to bacterial communities from other phytoplankton

blooms that reach the same magnitude of primary

productivity.

The second principal coordinate represented 11.0% of

the variation in nc-bacterial community composition, which

was less than one-third of the variation explained by PC1.

Unlike PC1, sample scores on PC2 were highly similar

between nearshore and offshore sites on all dates

(Fig. 4C). Therefore, it is unlikely that bloom-related

factors were strongly correlated to this axis of variation.

Temperature was the best predictor of PC2 scores

(Table 1). We did not include time as a covariate, because

time was highly correlated with temperature, and it created

multicollinearity issues in our model. The temperature

model residuals were normal, and did not exhibit significant

autocorrelation (Supporting Information Fig. S5).
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Therefore, our model supports that temperature was an

important factor in the structuring of nc-bacterial

community composition. Congruently, freshwater bacterial

communities are known to undergo seasonal shifts, and

temperature has been found to be the single largest deter-

minant of these patterns (Kent et al., 2004; Crump and

Hobbie, 2005; Shade et al., 2007).

Finally, PC3 explained only 6.72% of variation in nc-

bacterial community composition. PC3 scores differed

strongly between nearshore and offshore sites, but unlike

PC1, these differences did not correspond to dates

with large discrepancies in bloom intensity (Fig. 4E). Con-

ductivity was the best predictor of PC3 scores (Table 1),

and most model assumptions regarding normal indepen-

dent residuals were met, though there was some

autocorrelation in the residuals from nearshore1

(Supporting Information Fig. S5). The Detroit and Maumee

rivers are known to have distinct conductivity signatures

(Millie et al.). Therefore, we interpret variation on this third

axis as driven primarily by differences in water mass,

which result from differential inputs of the Maumee and

Detroit rivers to nearshore and offshore sites.

Thus, using three principal coordinates, which together

explain more than half of the variation in nc-bacterial com-

munity composition, we identified pH, chl a, temperature,

and conductivity as key environmental gradients. PC1,

which explained more than three times the variance of the

second and third coordinates, showed evident differentia-

tion between nearshore and offshore sites on dates with

large differences in pH and chl a. Therefore, we argue that

the bloom was a considerable disturbance to nc-bacterial

community composition.

Fig. 4. Principal coordinates analyses of nc-bacterial Bray-Curtis dissimilarity. Three principal coordinates were selected based on the output
of a scree plot.

A, B. PC 1 scores with respect to time and pH.

C, D. PC 2 scores with respect to time and temperature.

E, F. PC3 scores with respect to time and water specific conductivity.

Table 1. Regression models to predict scores on Bray-Curtis principal coordinates over time.

Variable PC1 PC1 PC2 PC3

model �pH 1 time �logChla 1 time �Temperature �SpCond

p-value *** *** *** ***

R2 0.678 0.658 0.822 0.451

Cross-validation MSE 0.0193 0.0233 0.00288 0.00527

The top model(s) for each PC are reported. Only one environmental covariate was considered in each model, and models were compared with
and without time as an additional covariate. p-values underwent FDR correction. Cross validation was performed by leaving out all samples
from the same timepoint as the test set. Supplementary plots showing model residuals are in Supporting Information Fig. S5 and S6.

8 M. A. Berry et al.

VC 2016 Society for Applied Microbiology and John Wiley & Sons Ltd, Environmental Microbiology, 00, 00–00



Bloom effects on abundant nc-bacterial groups and

resilience of bacterial communities to CHAB

disturbances

Principal coordinates analysis revealed that bloom-

associated measures corresponded to changes in nc-

bacterial community composition, but it did not reveal

which taxa were most affected. Therefore, we investigat-

ed which nc-bacterial taxa significantly correlated with

shifts in pH and chl a. Using Spearman’s rank correlation

tests, we found 34 abundant OTUs (mean relative

abundance> 0.1%) that were positively correlated with

pH and 27 that were negatively correlated (Supporting

Information Table S2). There was considerable overlap

(83%) with the OTUs associated with chl a. A majority of

the most significant positive and negative correlated

taxa to both bloom measures were Actinobacteria acI

OTUs. Actinobacteria acI was also the most abundant

clade in the nc-bacterial community by at least three-

fold. Interestingly, acI-A and acI-B OTUs decreased dur-

ing the CHAB, while acI-C OTUs increased (Fig. 5). In

addition, changes in the relative abundance of these

OTUs differed between nearshore and offshore stations,

particularly on dates in mid August when there was a

large discrepancy in algal pigments and pH. These data

suggest there was niche partitioning among acI OTUs in

response to the CHAB, which was conserved at the sub-

clade level. Numerous other studies have documented

niche and seasonal partitioning patterns in acI sub-

clades (Allgaier and Grossart, 2006; Newton et al.,

2011; Eiler et al., 2012), including partitioning by the

ratio of allochthonous to autochthonous carbon (Jones

et al., 2009) as well as by pH (Newton et al., 2007). How-

ever, these prior studies focused on partitioning between

acI-A, acI-B, acII, and acIV. We found no published

research on the ecology of acI-C, so further work will be

necessary to determine the mechanism by which this

sub-clade benefits from CHABs, and whether this mech-

anism is distinct from non-CHAB algal blooms.

Other abundant clades such as bacI, betI, bacV, and

betIV did not show the same conserved niche partitioning

to the bloom as acI (Supporting Information Fig. S7). With-

in each clade, there were individual OTUs that appeared to

respond positively or negatively during the bloom, but there

were also abundant OTUs whose relative abundance did

not strongly reflect bloom dynamics.

Dynamics at the OTU level, particularly among the acI,

demonstrate that nc-bacterial community composition was

highly affected by the western Lake Erie CHAB. Thus, bac-

terial communities exhibit a high degree of sensitivity to

CHAB disturbances (Shade et al., 2012). Nevertheless, by

the end of October, acI OTUs recovered towards pre-

bloom relative abundance. Similarly, PC1 scores returned

nearly to pre-bloom levels and Bray-Curtis dissimilarities

between the first and last time points at each site were

substantially smaller than the peak levels observed during

the bloom (nearshore1: 0.460, nearshore2: 0.453, off-

shore: 0.364). This quick recovery toward baseline levels

indicates community resilience (Shade et al. 2012). Fresh-

water bacterial communities have previously been shown

to be highly resilient to physical and chemical disturbances

(Shade et al., 2011), and our study indicates that the same

may be true for biotic disturbances.

Conclusion

Western Lake Erie’s bacterial community exhibited

changes in diversity and composition during the bloom

season of 2014. In particular, the evenness of Alphapro-

teobacteria and Betaproteobacteria showed differential

responses to algal pigment levels, suggesting that the

bloom affected niche diversity for these phylogenetic

groups. Changes in community composition could be rep-

resented in three coordinates, with the first coordinate

associated most strongly with bloom measures, the

second coordinate associated with temperature, and the

third coordinate associated with physical water mass

movements. These results support work by others demon-

strating that bacterial communities are impacted by

CHABs, and identifies the acI clade as a particularly affect-

ed group. The time resolution of this study also

demonstrates that most taxa affected by the CHAB exhibit

resilience by recovering to pre-bloom levels shortly after

the termination of this biological disturbance. A better

understanding of the specific relationships and processes

between bacterial diversity and the occurrence and toxicity

of CHABs will be useful given the projected acceleration of

CHABs in future years.

Experimental procedures

Sample collection

Samples were collected approximately weekly between mid-

June and late October, 2014 from three stations (nearshore1,

nearshore2, offshore) in the western basin of Lake Erie that

correspond to NOAA Great Lakes Environmental Research

Laboratory long-term monitoring sites WE12, WE2, WE4

respectively (NOAA-GLERL). Nearshore1 is closest to the

water intake for the city of Toledo, nearshore2 is close to

the mouth of the Maumee River, and the offshore site is on

the northeastern edge of the bloom perimeter (Fig. 1A).

Physicochemical measurements and microbial samples

were obtained from an integrated 20 L water sample taken

between the surface and 1 m above the bottom. The sample

was homogenized by shaking. All station depths ranged

between 4 and 12 m, and the shallowness of the western

basin prevents vertical stratification. Temperature, pH, and

conductivity were measured on deck, and algal pigment, cya-

notoxin, and nutrient measurements were analyzed at NOAA-

GLERL using standard techniques (U.S. EPA, 1979). H2O2

Bacterial community ecology of CHABs 9
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measurements were analyzed according to Cory et al. (2016).

For microbial samples, a 2 L subsample was taken from the
20 L sample and rehomogenized. 150 mL was syringe filtered
onto a 0.22 lm Millipore Express Plus filter (EMD Millipore,
Billerica, MA), though on peak bloom dates the filter clogged
before the full volume was filtered. All filter samples were

placed into cryovials with 1 ml of RNAlater (Ambion, Foster
City, CA) and frozen at 808C until extraction.

DNA extraction and sequencing. Filters were thawed at
room temperature and, while folded with biomass facing
inwards, rinsed with sterile PBS to remove RNAlater preserva-
tive. Filters were incubated in 100 lL Qiagen ATL tissue lysis

buffer, 300 lL Qiagen AL lysis buffer, and 30 lL proteinase K
for 1 h at 568C on a rotisserie (Qiagen, Hilden, Germany).
Cells were lysed by vortexing for 10 min. Lysates were
homogenized with the Qiashredder column, and DNA was
purified from the filtrate using the Qiagen DNeasy Blood and

Tissue kit according to standard protocol. Extracted DNA was
amplified using primer set 515f/806r, which targets the V4
hypervariable regions of the 16S rRNA gene (Bergmann et al.,
2011). The DNA was then sequenced using Illumina MiSeq v2

chemistry 2x250 (500 cycles) at the University of Michigan
Center for Microbial Systems. RTA v1.17.28 and MCS v2.2.0

software were used to generate data. Fastq files were submit-

ted to the NCBI sequence read archive under BioProject

PRJNA318386, SRA accession number SRP07334.

Sequence filtering and pre-processing. Mothur V 1.34.3

was used to perform quality control and cluster sequences

into OTUs (Schloss et al., 2009). Sequence processing was

performed according to the Mothur standard operating proce-

dure (http://www.mothur.org/wiki/MiSeq_SOP accessed on

March 13, 2015). Taxonomy was assigned to sequences using

the Wang method (Wang et al., 2007) with an 80% bootstrap

cutoff using the Freshwater Microbial Field Guide (FWMFG)

(Newton et al., 2011). This database resolves clade and sub-

clade level taxonomy for common freshwater taxa and allows

our data to be compared with other freshwater studies. How-

ever, the FWMFG lacks certain taxonomic groups such as

Planctomycetes, so we used the Silva database V119 (Quast

et al., 2013) for the remaining unassigned reads. OTUs were

clustered using the average neighbor algorithm with a 97%

similarity threshold. Mothur output files were imported into R V

3.2.2 (R Core Team, 2016) using the phyloseq package V

1.10 (McMurdie and Holmes, 2013) for all downstream analy-

ses of diversity and community composition. All scripts,

Fig. 5. Spatial and temporal dynamics of abundant Actinobacteria acI OTUs.
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mother output files, and sample data are publically available at

https://github.com/DenefLab/chab-microbial-ecology.

Spatial and temporal bloom dynamics

Spearman’s correlation tests were used to determine if there

were monotonic relationships between algal pigments, toxin,

and pH. To explore positive and negative associations

between Cyanobacteria OTUs, we performed pairwise Spear-

man’s correlation tests between all OTUs with mean relative

abundance> 0.0005 using the corr.test command in the psych

package with fdr correction (Revelle, 2016).

Bacterial alpha diversity

Alpha diversity was estimated using observed OTU richness

and Simpson’s Evenness (Simpson’s E), which is the Inverse

Simpson’s Index divided by richness. Alpha diversity estimates

were calculated for each sample by sampling sequences with

replacement to 15,631 reads (the smallest library size) and

averaging the measures over 100 trials using the estimate_r-

ichness command in phyloseq. Based on scatterplot

visualization, we ran either linear or polynomial models to pre-

dict the richness and evenness of different bacterial groups

from log chl a concentrations. Chl a measurements were log

scaled in order to meet assumptions of normal residual terms.

p-values for each model were adjusted with a Benjamini-

Hochberg false discovery rate (FDR) correction.

Bacterial community composition analyses

Differences in nc-bacterial community composition were cal-

culated using the Bray-Curtis dissimilarity. Before calculating

Bray-Curtis, data was transformed by scaling the raw propor-

tions of OTUs to the read count of the smallest library (15,631

reads in this study), and rounding to the nearest integer count.

This method is equivalent to the estimated value of averaging

counts from repeated rarifying trials, but is more reproducible

and does not contribute additional noise to the dataset

(McMurdie and Holmes, 2014). The relative abundance of an

nc-bacterial OTU was measured with respect to the nc-

bacteria rather than the total bacterial community to reduce

bias from changes in the cyanobacterial community. However,

this method does not completely eliminate compositional

effects (Aitchison, 1982).

To investigate differences in nc-bacterial community compo-

sition, we implemented a principal coordinates analysis. The

goal of this analysis was to visualize similarity between sam-

ples in reduced dimensions, and to identify the major axes of

variation in community composition through time. These axes

are likely, though not certain, to correspond with environmen-

tal gradients. PCoA and related eigen-analyses have been

implemented with time series data (Freeman et al., 2014;

Maurice et al., 2015), and the interpretation is similar to other

datasets except the sample scores on each axis are ordered

by time. The percentage of variance explained by each axis

was determined from the axis eigenvalue divided by the cumu-

lative sum of all eigenvalues. As the Bray-Curtis dissimilarity is

non-euclidean, some principal coordinates (PCs) had negative

eigenvalues, so we applied a Lingoes correction (Lingoes,

1971). To determine the number of principal coordinates to

examine, we looked for the inflection point in the scree plot,

which displays the relative variance in Bray-Curtis dissimilarity

explained by each coordinate.

To investigate gradients that could be associated with

changes in bacterial community composition, we constructed

linear models using environmental variables to predict Bray-

Curtis principal coordinate scores. The environmental meas-

urements that were included as potential covariates in our

model were: nitrate, ammonia, soluble reactive phosphorus,

temperature, hydrogen peroxide, conductivity, turbidity, pH,

particulate microcystin, chl a, and phycocyanin. Time series

often contain long-term trends in addition to short-term fluctu-

ations. Therefore, we experimented with including time as an

additional covariate in each model. We assumed that differ-

ences between nearshore and offshore sites were due to

environmental conditions, rather than inherent differences

between these sites, so our models only included fixed effects.

Model residuals were examined to determine whether they

met assumptions of normality and independence (i.e. no auto-

correlation). To assess model accuracy, we performed ‘leave-

one-timepoint-out’ cross validation of the best models for each

axis and reported the mean squared error. This protocol is

similar to LOOCV, except rather than removing one sample at

a time during the model training stage, we removed all three

samples from a given time point. This provided a less biased

estimate of model error, because measurements from the

same dates were frequently similar across sites, and would

have reduced the error on the test set.

In addition to the simple linear models, we attempted to

model each set of principal coordinates scores with multiple

linear regression. We included all environmental variables as

potential covariates and used best subset selection to identify

the model that minimized the Bayesian Information Criterion.

The BIC penalizes more complex models in order to optimize

the total amount of variance explained while reducing varia-

bles that contribute little explanatory power. Because we had

relatively few data points (53) and many potential covariates

(13), we also implemented a bootstrap analysis, in which we

sampled with replacement and refit the models 100 times in

order to determine the stability of a particular predictor. How-

ever, even with the bootstrapping, the results of each model

varied depending on the seed value. We found that there was

really only one stable predictor (present in >90% of all boot-

strapped models), which is why we proceeded with simple

time series models that included a single environmental

covariate.

The principal coordinates approach that we took is an

example of an indirect gradient analysis – gradients are

unknown a priori and are estimated by linking environmental

variables to the canonical axes of a sample similarity measure.

We also tried an implementation of direct gradient analysis

using redundancy analysis (RDA). RDA is a constrained ver-

sion of principal components analysis in which the canonical

axes are linear combinations of the response variables and

also relate to the response variable via multiple linear regres-

sion. A time series version of RDA can be implemented using

asymmetric eigenvector maps (Baho et al., 2015). Our RDA

results identified the same gradients as our PCoA approach

among others. Ultimately, we found the PCoA approach to be

more appropriate, because the variance explained by the
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constrained axes was not much more than the unconstrained

axes, indicating that the model was missing some important

environmental gradients. In particular, we found it more accu-

rate and intuitive to observe the behavior of nearshore vs.

offshore sites over time in unconstrained ordination space

than constrained ordination space.

Finally, we performed the same principal coordinate analy-

sis and time series linear model approach for the

cyanobacterial community. However, the principal coordinates

exhibited very noisy trends over time and were not strongly

correlated to specific environmental variables. We also had

concerns that the compositional nature of the OTU counts

would lead to stronger biases in these analyses, because the

cyanobacterial community constituted a relatively small pro-

portion of all bacterial reads. Therefore, we report more

descriptive statistics of the cyanobacterial community over

time rather than implementing a model-based approach.

OTU-level analysis

To find potential positive or negative associations between nc-

bacteria and the bloom, we performed Spearman’s rank corre-

lation tests with pH and chl a. We examined all nc-bacteria

OTUs with mean relative abundance larger than 0.1% (107

taxa total) using the corr.test command from the psych pack-

age (Revelle, 2016) with an FDR correction.

Acknowledgements

This work was supported by a grant from the Erb Family Foun-

dation made through the University of Michigan Water Center

and by the Great Lakes Restoration Initiative. RMC was sup-

ported by NSF CAREER award 1351745. We are grateful to

the crew from NOAA-GLERL who assisted with fieldwork. We

thank current members of the Denef, Dick, and Duhaime labs

for discussion of the manuscript. We also thank Prof. Kerby

Shedden (University of Michigan) for in depth discussion and

consultation on statistical methods. This manuscript is NOAA-

GLERL contribution number 1846 and CILER contribution

number 1104.

Author Contributions

GJD, VJD, THJ, TWD, MBD, GWK, RMC designed the

experiment, MAB, JAM, TWD, DG, PD performed experi-

ments, MAB analyzed data, and MAB, VJD, GJD, GWK,

RMC, TWD, JAM wrote the paper.

Conflict of Interest

The authors declare they do not have any competing finan-

cial interests in relation to this work.

References

Agha, R., del Mar Labrador, M., de los R�ıos, A., and

Quesada, A. (2016) Selectivity and detrimental effects of

epiphytic Pseudanabaena on Microcystis colonies. Hydro-

biologia 777: 139–148.

Aitchison, J. (1982) The Statistical Analysis of Compositional

Data. J R Stat Soc Ser B 44: 139–177.
Allgaier, M., and Grossart, H.P. (2006) Diversity and seasonal

dynamics of actinobacteria populations in Four Lakes in

Northeastern Germany. Appl Environ Microbiol 72: 3489–

3497.

Apprill, A., McNally, S., Parsons, R., and Weber, L. (2015)

Minor revision to V4 region SSU rRNA 806R gene primer

greatly increases detection of SAR11 bacterioplankton.

Aquat Microb Ecol 75: 129–137.
Backer, L., Landsberg, J., Miller, M., Keel, K., and Taylor, T.

(2013) Canine cyanotoxin poisonings in the United States

(1920s–2012): Review of suspected and confirmed cases

from three data sources. Toxins (Basel) 5: 1597–1628.
Baho, D.L., Futter, M.N., Johnson, R.K., and Angeler, D.G.

(2015) Assessing temporal scales and patterns in time

series: Comparing methods based on redundancy analysis.

Ecol Complex 22: 162–168.
Behrenfeld, M.J., Boss, E., Siegel, D.A., and Shea, D.M.

(2005) Carbon-based ocean productivity and phytoplankton

physiology from space. Global Biogeochem Cycles 19: 14.
Bergmann, G.T., Bates, S.T., Eilers, K.G., Lauber, C.L.,

Caporaso, J.G., Walters, W.A., et al. (2011) The under-

recognized dominance of Verrucomicrobia in soil bacterial

communities. Soil Biol. Biochem 43: 1450–1455.
Bingham, M., Sinha, S.K., and Lupi, F. (2015) Economic bene-

fits of reducing harmful algal blooms in Lake Erie. Environ-

mental Consulting & Technology, Inc., Report, 66 pp. http://

ijc.org/files/tinymce/uploaded/Publications/Economic-Bene-

fits-Due-to-Reduction-in-HABs-October-2015.pdf
Bridgeman, T.B., Chaffin, J.D., and Filbrun, J.E. (2013) A nov-

el method for tracking western Lake Erie Microcystis

blooms, 2002–2011. J Great Lakes Res 39: 83–89.
Brooks, J.P., Edwards, D.J., Harwich, M.D., Rivera, M.C.,

Fettweis, J.M., Serrano, M.G., et al. (2015) The truth about

metagenomics: Quantifying and counteracting bias in 16S

rRNA studies. BMC Microbiol 15: 66.

Carmichael, W.W., Azevedo, S.M., An, J.S., Molica, R.J.,

Jochimsen, E.M., Lau, S., et al. (2001) Human fatalities

from cyanobacteria: Chemical and biological evidence for

cyanotoxins. Environ Health Perspect 109: 663–668.
Conroy, J.D., Edwards, W.J., Pontius, R.A., Kane, D.D.,

Zhang, H., Shea, J.F., et al. (2005) Soluble nitrogen and

phosphorus excretion of exotic freshwater mussels (Dreis-

sena spp.): Potential impacts for nutrient remineralisation in

western Lake Erie. Freshw Biol 50: 1146–1162.
Cory, R.M., Davis, T.W., Dick, G.J., Johengen, T., Denef, V.J.,

Berry, M., et al. (2016) Seasonal dynamics in dissolved

organic matter, hydrogen peroxide, and cyanobacterial

blooms in Lake Erie. Front Mar Sci 3: 54.

Cram, J.A., Chow, C.E.T., Sachdeva, R., Needham, D.M.,

Parada, A.E., Steele, J.A., and Fuhrman, J.A. (2015) Sea-

sonal and interannual variability of the marine bacterio-

plankton community throughout the water column over ten

years. ISME J 9: 563–580.
Crump, B.C., and Hobbie, J.E. (2005) Synchrony and season-

ality in bacterioplankton communities of two temperate riv-

ers. Limnol Oceanogr 50: 1718–1729.
Davis, T.W., and Gobler, C.J. (2016) Preface for special issue

on global expansion of harmful cyanobacterial blooms: Diver-

sity, ecology, causes, and controls. Harmful Algae 54: 1–3.

12 M. A. Berry et al.

VC 2016 Society for Applied Microbiology and John Wiley & Sons Ltd, Environmental Microbiology, 00, 00–00

http://ijc.org/files/tinymce/uploaded/Publications/Economic-Benefits-Due-to-Reduction-in-HABs-October-2015.pdf
http://ijc.org/files/tinymce/uploaded/Publications/Economic-Benefits-Due-to-Reduction-in-HABs-October-2015.pdf
http://ijc.org/files/tinymce/uploaded/Publications/Economic-Benefits-Due-to-Reduction-in-HABs-October-2015.pdf


Davis, T.W., Koch, F., Marcoval, M.A., Wilhelm, S.W., and

Gobler, C.J. (2012) Mesozooplankton and microzooplank-

ton grazing during cyanobacterial blooms in the western

basin of Lake Erie. Harmful Algae 15: 26–35.
Downing, A.L., and Leibold, M.A. (2002) Ecosystem conse-

quences of species richness and composition in pond food

webs. Nature 416: 837–841.
Eiler, A., and Bertilsson, S. (2004) Composition of freshwater

bacterial communities associated with cyanobacterial blooms

in four Swedish lakes. Environ Microbiol 6: 1228–1243.
Eiler, A., Heinrich, F., and Bertilsson, S. (2012) Coherent

dynamics and association networks among lake bacterio-

plankton taxa. ISME J 6: 330–342.
Freeman, J., Vladimirov, N., Kawashima, T., Mu, Y.,

Sofroniew, N.J., Bennett, D.V., et al. (2014) Mapping brain

activity at scale with cluster computing. Nat Methods 11:

941–950.
Gobler, C.J., Davis, T.W., Deonarine, S.N., Saxton, M.A.,

Lavrentyev, P.J., Jochem, F.J., and Wilhelm, S.W. (2008)

Grazing and virus-induced mortality of microbial populations

before and during the onset of annual hypoxia in Lake Erie.

Aquat Microb Ecol 51: 117–128.

Gobler, C.J., Burkholder, J.M., Davis, T.W., Harke, M.J., Stow,

C.A., and Van de Waal, D.B. (2016) The dual role of nitro-

gen supply in controlling the growth and toxicity of cyano-

bacterial blooms. Harmful Algae 54: 87–97.
Harke, M.J., Davis, T.W., Watson, S.B., and Gobler, C.J.

(2016a) Nutrient-controlled niche differentiation of Western

Lake Erie cyanobacterial populations revealed via metatran-

scriptomic surveys. Environ Sci Technol 50: 604–615.
Harke, M.J., Steffen, M.M., Gobler, C.J., Otten, T.G., Wilhelm,

S.W., Wood, S.A., and Paerl, H.W. (2016b) A review of the

global ecology, genomics, and biogeography of the toxic

cyanobacterium, Microcystis spp. Harmful Algae 54: 4–20.
Hern�andez, J.M., L�opez-Rodas, V., and Costas, E. (2009)

Microcystins from tap water could be a risk factor for liver

and colorectal cancer: A risk intensified by global change.

Med Hypotheses 72: 539–540.
Horner-Devine, M.C., Leibold, M. A., Smith, V.H., and

Bohannan, B.J.M. (2003) Bacterial diversity patterns along

a gradient of primary productivity. Ecol Lett 6: 613–622.
Hu, Z., Liu, Y., and Li, D. (2004) Physiological and biochemical

analyses of microcystin-RR toxicity to the cyanobacterium

Synechococcus elongatus. Environ Toxicol 19: 571–577.
Johansen, S. (2007) Correlation, regression, and cointegra-

tion of nonstationary economic time series. Creat Res Pap

2461: 0–9.
Jones, S.E., Newton, R.J., and McMahon, K.D. (2009) Evi-

dence for structuring of bacterial community composition by

organic carbon source in temperate lakes. Environ Microbiol

11: 2463–2472.
Kara, E.L., Hanson, P.C., Hu, Y.H., Winslow, L., and McMahon,

K.D. (2012) A decade of seasonal dynamics and co-

occurrences within freshwater bacterioplankton communities

from eutrophic Lake Mendota, WI, USA. ISME J 7: 680–684.
Kent, A.D., Jones, S.E., Yannarell, A.C., Graham, J.M.,

Lauster, G.H., Kratz, T.K., and Triplett, E.W. (2004) Annual

patterns in bacterioplankton community variability in a

Humic Lake. Microb Ecol 48: 550–560.
Lau, W.W.Y., Keil, R.G., and Armbrust, E.V. (2007) Succession

and diel transcriptional response of the glycolate-utilizing

component of the bacterial community during a spring phyto-

plankton bloom. Appl Environ Microbiol 73: 2440–2450.
Lauber, C.L., Hamady, M., Knight, R., and Fierer, N. (2009)

Pyrosequencing-based assessment of soil pH as a predic-

tor of soil bacterial community structure at the continental

scale. Appl Environ Microbiol 75: 5111–5120.
Lindstrom, E.S., Kamst-Van Agterveld, M.P., and Zwart, G.

(2005) Distribution of typical freshwater bacterial groups is

associated with pH, temperature, and Lake water retention

time. Appl Environ Microbiol 71: 8201–8206.
Lingoes, J.C. (1971) Some boundary conditions for a mono-

tone analysis of symmetric matrices. Psychometrika 36:

195–203.
Llir�os, M., Inceo�glu, €O., Garc�ıa-Armisen, T., Anzil, A.,

Leporcq, B., Pigneur, L.M., et al. (2014) Bacterial communi-

ty composition in three freshwater reservoirs of different

alkalinity and trophic status. PLoS One 9: e116145.
L�opez-Archilla, A.I., Moreira, D., L�opez-Garc�ıa, P., and

Guerrero, C. (2004) Phytoplankton diversity and cyanobac-

terial dominance in a hypereutrophic shallow lake with bio-

logically produced alkaline pH. Extremophiles 8: 109–115.

Maurice, C.F., Knowles, S.C., Ladau, J., Pollard, K.S., Fenton,

A., Pedersen, A.B., and Turnbaugh, P.J. (2015) Marked sea-

sonal variation in the wild mouse gut microbiota. ISME J 9:

2423–2434.

McMurdie, P.J., and Holmes, S. (2013) phyloseq: An R pack-

age for reproducible interactive analysis and graphics of

microbiome census data. PLoS One 8: e61217.

McMurdie, P.J., and Holmes, S. (2014) Waste not, want not:

Why rarefying microbiome data is inadmissible. PLoS Com-

put Biol 10: e1003531.

Michalak, A.M., Anderson, E.J., Beletsky, D., Boland, S.,

Bosch, N.S., Bridgeman, T.B., et al. (2013) Record-setting

algal bloom in Lake Erie caused by agricultural and meteo-

rological trends consistent with expected future conditions.

Proc Natl Acad Sci 110: 6448–6452.
Miller, M.A., Kudela, R.M., Mekebri, A., Crane, D., Oates,

S.C., Tinker, M.T., et al. (2010) Evidence for a novel marine

harmful algal bloom: Cyanotoxin (Microcystin) transfer from

land to sea Otters. PLoS One 5: e12576.
Millie, D.F., Fahnenstiel, G.L., Dyble, J., Ae, B., Pigg, R.J.,

Rediske, R.R., et al. (2009) Late-summer phytoplankton in

western Lake Erie (Laurentian Great Lakes): Bloom distri-

butions, toxicity, and environmental influences. Aquatic

Ecology 43: 915–934.
Newton, R.J., Jones, S.E., Helmus, M.R., and McMahon, K.D.

(2007) Phylogenetic ecology of the freshwater Actinobacte-

ria acI lineage. Appl Environ Microbiol 73: 7169–7176.
Newton, R.J., Jones, S.E., Eiler, A., McMahon, K.D., and

Bertilsson, S. (2011) A guide to the natural history of fresh-

water lake bacteria. Microbiol Mol Biol Rev 75: 14–49.
O’Neil, J.M., Davis, T.W., Burford, M.A., and Gobler, C.J.

(2012) The rise of harmful cyanobacteria blooms: The

potential roles of eutrophication and climate change. Harm-

ful Algae 14: 313–334.
Ohio Department of Natural Resources, D. of G.S. Lake Erie

Facts.
Ouellette, A.J.A., Handy, S.M., and Wilhelm, S.W. (2006)

Toxic Microcystis is widespread in Lake Erie: PCR detection

of toxin genes and molecular characterization of associated

cyanobacterial communities. Microb Ecol 51: 154–165.

Bacterial community ecology of CHABs 13

VC 2016 Society for Applied Microbiology and John Wiley & Sons Ltd, Environmental Microbiology, 00, 00–00



Paerl, H.W., and Huisman, J. (2009) Climate change: A cata-

lyst for global expansion of harmful cyanobacterial blooms.

Environ Microbiol Rep 1: 27–37.
Paerl, H.W., and Otten, T.G. (2013) Harmful cyanobacterial

blooms: Causes, consequences, and controls. Microb Ecol

65: 995–1010.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T.,

Yarza, P., et al. (2013) The SILVA ribosomal RNA gene

database project: Improved data processing and web-

based tools. Nucleic Acids Res 41:D1.
R Core Team (2016) R: A language and environment for sta-

tistical computing. R Foundation for Statistical Computing,

Vienna, Austria. https://www.R-project.org/.
Rangel, M., Martins, J., Garcia, A., Conserva, G., Costa-Neves,

A., Sant’anna, C., and de Carvalho, L. (2014) Analysis of the

toxicity and histopathology induced by the oral administration

of Pseudoanabaena galeata and Geitlerinema splendidum

(Cyanobacteria) extracts to mice. Mar Drugs 12: 508–524.
Revelle, W. (2016) psych: Procedures for Personality and Psy-

chological Research, Northwestern University, Evanston,

Illinois, USA, http://CRAN.R-project.org/package=psych

Version 5 1.6.6.
Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann,

M., Hollister, E.B., et al. (2009) Introducing mothur: Open-

source, platform-independent, community-supported soft-

ware for describing and comparing microbial communities.

Appl Environ Microbiol 75: 7537–7541.
Shade, A., Kent, A.D., Jones, S.E., Newton, R.J., Triplett,

E.W., and McMahon, K.D. (2007) Interannual dynamics and

phenology of bacterial communities in a eutrophic lake. Lim-

nol Oceanogr 52: 487–494.

Shade, A., Read, J.S., Welkie, D.G., Kratz, T.K., Wu, C.H.,

and McMahon, K.D. (2011) Resistance, resilience and

recovery: Aquatic bacterial dynamics after water column

disturbance. Environ Microbiol 13: 2752–2767.
Shade, A., Peter, H., Allison, S.D., Baho, D.L., Berga, M.,

Burgmann, H., et al. (2012) Fundamentals of microbial com-

munity resistance and resilience. Front Microbiol 3: 1–19.
Smith, V.H. (2007) Microbial diversity-productivity relationships

in aquatic ecosystems. FEMS Microbiol Ecol 62: 181–186.
Steffen, M.M., Belisle, B.S., Watson, S.B., Boyer, G.L., and

Wilhelm, S.W. (2014) Status, causes and controls of cyano-

bacterial blooms in Lake Erie. J Great Lakes Res 40: 215–

225.

Tanber, G. (2014) Toxin leaves 500,000 in northwest Ohio

without drinking water. Reuters. http://www.reuters.com/arti-

cle/us-usa-water-ohio-idUSKBN0G20L120140802
Tang, X., Gao, G., Chao, J., Wang, X., Zhu, G., and Qin, B.

(2010) Dynamics of organic-aggregate-associated bacterial

communities and related environmental factors in Lake

Taihu, a large eutrophic shallow lake in China. Limnol Oce-

anogr 55: 469–480.
Teeling, H., Fuchs, B.M., Becher, D., Klockow, C.,

Gardebrecht, A., Bennke, C.M., et al. (2012) Substrate-con-

trolled succession of marine bacterioplankton populations

induced by a phytoplankton bloom. Science 336: 608–611.

U.S. EPA (1979) Methods for Chemical Analysis of Water and

Wastes Cincinnati, OH.

Visser, P.M., Verspagen, J.M.H., Sandrini, G., Stal, L.J.,

Matthijs, H.C.P., Davis, T.W., et al. (2016) How rising CO2

and global warming may stimulate harmful cyanobacterial

blooms. Harmful Algae 54: 145–159.

Wang, Q., Garrity, G.M., Tiedje, J.M., and Cole, J.R. (2007)

Naive Bayesian classifier for rapid assignment of rRNA

sequences into the new bacterial taxonomy. Appl Environ

Microbiol 73: 5261–5267.
Wilhelm, S.W., Farnsley, S.E., LeCleir, G.R., Layton, A.C.,

Satchwell, M.F., DeBruyn, J.M., et al. (2011) The relation-

ships between nutrients, cyanobacterial toxins and the

microbial community in Taihu (Lake Tai), China. Harmful

Algae 10: 207–215.

Woodhouse, J.N., Kinsela, A.S., Collins, R.N., Bowling, L.C.,

Honeyman, G.L., Holliday, J.K., and Neilan, B.A. (2015)

Microbial communities reflect temporal changes in cyano-

bacterial composition in a shallow ephemeral freshwater

lake. ISME J 10: 1337–1351.
Xiong, J., Liu, Y., Lin, X., Zhang, H., Zeng, J., Hou, J., et al.

(2012) Geographic distance and pH drive bacterial distribu-

tion in alkaline lake sediments across Tibetan Plateau.

Environ Microbiol 14: 2457–2466.

Yang, C., Li, Y., Zhou, B., Zhou, Y., Zheng, W., Tian, Y., et al.

(2015) Illumina sequencing-based analysis of free-living

bacterial community dynamics during an Akashiwo san-

guine bloom in Xiamen sea, China. Sci Rep 5: 8476.
Ye, W., Tan, J., Liu, X., Lin, S., Pan, J., Li, D., and Yang, H.

(2011) Temporal variability of cyanobacterial populations in

the water and sediment samples of Lake Taihu as deter-

mined by DGGE and real-time PCR. Harmful Algae 10:

472–479.

Supporting information

Additional Supporting Information may be found in the

online version of this article at the publisher’s web-site:

Fig. S1. Environmental data pertaining to each microbial

sample across sites and time points.
Fig. S2. Observed Richness and Simpson’s Evenness of

major nc-bacterial groups not depicted in Figure 3.
Fig. S3. Responses of Alphaproteobacteria, Bacteroidetes,

and Betaproteobacteria Richness and evenness to Phyco-

cyanin and pH.
Fig. S4. Scree plot of Bray-Curtis principal coordinates

Fig. S5. Histograms of residuals from PC linear models.
Fig. S6. Autocorrelation function for PC linear model resid-

uals. Blue-dashed line indicates rejection of the null hypoth-

esis for no autocorrelation by the ljung-box statistic.
Fig. S7. Spatiotemporal dynamics of abundant Bac-I OTUs.
Fig. S8. Spatiotemporal dynamics of abundant Bet-I OTUs.
Fig. S9. Spatiotemporal dynamics of abundant Planctomy-

cetaceae OTUs.
Fig. S10. Spatiotemporal dynamics of abundant bacV

OTUs.
Table S1. Spearman’s rank correlation coefficients between

abundant cyanobacterial OTUs.

Table S2. Significant Spearman’s rank correlations between

pH and abundant nc-bacterial OTUs.

14 M. A. Berry et al.

VC 2016 Society for Applied Microbiology and John Wiley & Sons Ltd, Environmental Microbiology, 00, 00–00

https://www.R-project.org/
http://CRAN.R-project.org/package=psych
http://www.reuters.com/article/us-usa-water-ohio-idUSKBN0G20L120140802
http://www.reuters.com/article/us-usa-water-ohio-idUSKBN0G20L120140802

