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The Dynamical Core Model Intercomparison Project (DCMIP) provides a set of tests
and procedures designed to facilitate development and intercomparison of atmospheric
dynamical cores in general circulation models (GCMs). Test category 1 examines the
advective transport of passive tracers by three-dimensional prescribed wind velocity fields,
on the sphere. These tests are applied to the Spectral Element (SE) dynamical core of the
Community Atmosphere Model (CAM), the default for high-resolution simulations in the
Community Earth System Model (CESM). Test case results are compared with results from
the CAM-FV (Finite Volume) and MCore models where possible. This analysis serves both
to evaluate the performance of CAM-SE’s spectral-element tracer transport routines as well
as to provide a baseline for comparison with other atmospheric dynamical cores and for
future improvements to CAM-SE itself.
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1. Introduction

The Dynamical Core Model Intercomparison Project organized
by Jablonowski et al. (2012) is an international collaboration
tasked with producing a set of standardized benchmarks for
intercomparison of atmospheric dynamical cores in global climate
models. The DCMIP tests are designed to supplement existing
model intercomparison suites including the shallow-water test
cases of Williamson et al. (1992), the Atmospheric Model
Intercomparison (AMIP) tests of Gates (1992) and Gates et al.
(1999), and the Coupled Model Intercomparison Project (CMIP)
tests of Meehl et al. (2000, 2005). The DCMIP tests focus solely
on the atmospheric dynamical core in isolation from other model
components, covering the intermediate regime between shallow-
water simulations and 3D global simulations with full physics.
They are intended to be of particular value in the early stages of
model development and in the development of non-hydrostatic
atmospheric dynamical cores.

In this article, the DCMIP tracer transport tests are applied
to the spectral element dynamical core of the Community
Atmosphere Model, subsequently referred to as CAM-SE. As
described in Dennis et al. (2012), CAM-SE is the current default

spectral-element atmospheric dynamical core of the Community
Earth System Model (CESM) for high-resolution simulations.
Improvement of CAM-SE is an area of active research, with
projects spanning the development of non-hydrostatic models,
improved vertical representations, a discontinuous-Galerkin dis-
cretization, fully implicit and semi-implicit time discretizations,
amongst others. The main purpose of this article is to establish
a baseline set of results, in order to facilitate objective analysis
of new technologies within CAM-SE. Due to space constraints,
this article focuses solely on the tracer transport tests, with the
remainder of the DCMIP test suite left for future publication.

As DCMIP represents a new protocol, only a handful of results
have been published to date. The details of each DCMIP test
and its recommended usage are described at length in Ullrich
et al. (2012). The tracer transport tests were presented in further
detail in Kent et al. (2014) along with sample test results for the
CAM-FV and MCore dynamical cores (Ullrich and Jablonowski,
2012). These tests were also used in Nair et al. (2015). The most
complete description of the DCMIP test suite is provided by the
project website (Jablonowski et al., 2012) where test descriptions,
Fortran code, and sample results for many different models, both
hydrostatic and non-hydrostatic, are available. To date, more than
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15 modelling groups have contributed to the intercomparison by
running many of the tests from the DCMIP suite. However, while
useful, the online results for most models are incomplete and
could benefit from further analysis.

DCMIP category 1 consists of three passive tracer advection
tests which are three-dimensional generalizations of well-
known two-dimensional test cases. DCMIP test 1-1 applies
a highly deformational lateral velocity field, and is based on
the deformational test case 4 of Nair and Lauritzen (2010).
DCMIP 1-1 differs from that test in that an oscillatory vertical
transport component has been added to make it fully three-
dimensional. Also two tracer fields with a specific nonlinear
relationship were added to enable application of the tracer-
correlation diagnostics described in Lauritzen and Thuburn
(2012). DCMIP test 1-2 produces a Hadley-like meridional
circulation and is designed to test the accuracy of the coupling
between the horizontal and vertical representations. It is a
generalization of the test described in Zerroukat and Allen (2012)
with time-reversal added to provide an analytical solution for
error analysis. DCMIP test 1-3 examines the advection of tracers
over steep orography. It is an extension of the 2D test in the
x–z plane of Schär et al. (2002), with thin-cloud layers placed
at multiple heights in order to evaluate the effects of terrain-
following coordinates.

The remainder of this article is organized as follows. Section 2
reviews aspects of the CAM-SE model relevant to tracer transport
including the computational mesh, the tracer transport algorithm,
and regularization. In section 3, the DCMIP 1-x tests are described
and results are presented for the CAM-SE dynamical core.
In section 4, the results are summarized.

2. The CAM-SE model

The Community Earth System Model described in Hurrell
et al. (2013) is a freely distributed global climate model
with a large community of users. It is composed of multiple
components representing the atmosphere, ocean, land, ice and
other geophysical subsystems of the global Earth system. Its
atmospheric component CAM is described in detail in Neale et al.
(2010). CAM is composed of a dynamical core and a physical
parametrization package. The dynamical core is responsible for
simulating the geophysical fluid flow explicitly resolved at a given
resolution. The physics package parametrizes important physical
processes occurring on sub-grid scales not explicitly resolved by
the model such as atmospheric turbulence, radiative transfer,
convection, and boundary-layer processes.

CAM may be configured to use one of several distinct dynamical
cores including CAM-SE, CAM-FV, CAM-EUL, or CAM-SLD.
The default dynamical core for high-resolution simulations is
CAM-SE, which employs a split spatial representation with
a fourth-order accurate spectral-element discretization in the
horizontal and second-order accurate floating-Lagrangian and
finite-difference (FD) discretizations in the vertical. CAM-SE
represents one of several models developed in HOMME, the
High-Order Method Modeling Environment, first introduced by
Thomas and Loft (2005). The DCMIP 1-x tests described herein
were executed in the HOMME stand-alone environment.

In the following sections, the CAM-SE routines relevant for
tracer transport are summarized. Neale et al. (2010) and Dennis
et al. (2012) give a more complete description of the CAM-SE
atmospheric dynamical core.

2.1. The computational mesh

CAM-SE makes use of a hybrid pressure terrain-following vertical
coordinate η described in Simmons and Burridge (1981). The
pressure p is related to η through the hybrid coefficients
A(η) and B(η) such that p(λ, ϕ, η) = A(η)p0 + B(η)ps(λ, ϕ),
where η = A(η) + B(η) lies in the range η ∈ [0, 1], the quantity
p0 = 1000 hPa is a constant reference pressure, and ps(λ, ϕ) is

Unstructured (a) (b)
Quadrilateral Grid

GLL Spectral Element

Figure 1. (a) Horizontal discretization CAM-SE employs an unstructured grid of
curvilinear quadrilateral elements, arranged in a cubed-sphere configuration by
default with Ne elements per face by default. (b) Scalar fields are represented by
polynomials with Np nodes, or degrees of freedom per element edge. The nodes
are placed at Gauss–Lobatto–Legendre (GLL) quadrature points to simplify
numerical integration and to diagonalize the elemental mass matrix. In this
example, Ne = 15 and Np = 4 which corresponds to a mean spacing of 2◦ per
degree of freedom.

the surface pressure. The DCMIP tracer transport tests employ
coefficients with the analytic relationship

Bi =
[

ηi − ηt

1 − ηt

]c

, Ai = ηi − Bi , (1)

where c is a smoothing exponent that controls the rate at which η

transforms from a terrain-following coordinate to a pure pressure
coordinate at the upper boundary ηt. Unless otherwise noted,
c = 1 is used as the default. Default operational values of the A
and B coefficients used in CAM-SE may be found in Appendix B
of Reed and Jablonowski (2012).

In the horizontal, CAM-SE partitions the domain into an
unstructured mesh of non-overlapping quadrilateral elements
with conforming edges. Elements are arranged in a cubed-
sphere configuration by default, as shown in Figure 1(a). A
cubed-sphere mesh, first introduced by Sadourny (1972), is
advantageous as its elements are quasi-uniform in size, and
it avoids element clustering at the poles, which plagues the
traditional longitude–latitude grid. Each cube face is divided into
Ne elements per edge which are mapped to the surface of the sphere
using the gnomonic equal-angle projection of Rančić et al. (1996).

2.2. Tracer transport

The tracer transport routine in CAM-SE employs a discrete
version of the advection equation

∂

∂t

(
qi

∂p

∂η

)
+ ∇η ·

(
qiu

∂p

∂η

)
+ ∂

∂η

(
qiη̇

∂p

∂η

)
= 0, (2)

expressed in η vertical coordinates, following Simmons and Bur-
ridge (1981) using the generalized vertical transforms of Kasahara
(1974). The quantity qi represents the mixing ratio of a given
tracer i, and η̇ is the vertical velocity in η coordinates. The
vertical pressure gradient ∂p/∂η acts a pseudo-density and is
related to the true density ρ by the hydrostatic balance condi-
tion ∂p/∂η = −gρ∂z/∂η. Other model quantities are defined in
Table 1. Lateral and vertical tracer transport are performed sepa-
rately in a time-split manner, using the spectral element method
in the horizontal followed by a Lagrangian method in the vertical.

Vertical transport is accomplished using the Lagrangian
approach of Lin (2004). The tracers are transported using a
Lagrangian coordinate system η′ moving with the tracers such
that η̇′ = 0. At the beginning of each time step, the η′ levels
coincide with η-level midpoints. After several tracer time steps,
the tracers are mapped back onto the η-layer midpoints using a
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Table 1. Model variable definitions.

f Coriolis parameter
k̂ radial unit vector
L number of vertical levels
p pressure
ps surface pressure
qi tracer mixing ratio
t time
T temperature
u zonal wind
u = (u, v) lateral wind vector
v meridional wind
w vertical velocity
η hybrid vertical coordinate
λ longitude
ρ density
� = gz geopotential
ϕ latitude
ω vertical pressure velocity
	x mean horizontal resolution
lim limiter option

monotone remapping technique, similar to the one described in
Nair et al. (2009).

Horizontal transport is accomplished by applying the nodal
spectral element method to solve the discrete form of

∂

∂t

(
qiρ̃

) = −∇ · (
qiρ̃ u

)
, (3)

where ρ̃ = ∂p/∂η′ is the pseudo-density in η′ coordinates.
Alternative horizontal tracer transport schemes based on semi-

Lagrangian techniques are available in CAM, including the
CSLAM method of Lauritzen et al. (2010) and the SPELT method
of Erath and Nair (2014). However, this discussion will be limited
to the default transport scheme.

The tracer transport equations are discretized in time using
a three-stage strong-stability-preserving (SSP) second-order
accurate Runge–Kutta (RK) method of Spiteri and Ruuth (2002).
This method was chosen to preserve horizontal monotonicity.
In CAM-SE, the horizontal tracer-transport routines are sub-
cycled nr times between vertical re-mapping events, and dynamics
routines are sub-cycled nq times per tracer-transport step. In this
work, nr = 1, indicating that remapping is applied after each
tracer transport step, and the value of nq is unspecified as the
remaining dynamics routines are not used.

2.3. The projection operator

The spectral element method requires globally continuous
solutions. After a single time step, the solution will in general
be discontinuous at element edges, as only data within a given
element are used to compute the local solution. To restore
continuity, a projection operator P : V0 → V1 must be applied,
where V0 is the space of piecewise continuous polynomials
spanned by φi and V1 is the subset of those that are also C0

continuous.
In practice, this operation is performed by averaging the values

at GLL nodes shared by more than one element. This process is
referred to as global assembly in Karniadakis and Sherwin (2013)
or as the direct stiffness summation (DSS) in Deville et al. (2002).
The DSS projection is applied after each sub-step of the RK time
integration.

2.4. Regularization

The solution produced by time-integration of the tracer transport
equation is accurate and locally conservative but it can also be
oscillatory. Various optional limiters may be applied after the
remap phase in order to reduce or eliminate oscillations and

Table 2. Parameters for 3D deformation test 1-1.

Parameter Value Description

a 6.37122 × 106 m Radius of the Earth
g 9.80616 m s−2 Gravity
H RdT0/g = 8.78 km Scale height
k 10a/τ Deformational wind speed
p0 1000 hPa Reference pressure
Rd 287.0 J kg−1K−1 Gas constant for dry air
T0 300 K Isothermal temperature
zt 12 000 m z coordinate of model top
ηt 0.255 η coordinate of model top
λ′ λ − 2π t/τ Translational longitude
τ 12 days Period of motion
�s 0 Flat geopotential surface

to prevent non-positive tracer values, as discussed in Taylor
et al. (2009). By default, CAM-SE uses an optimization based
quasi-monotone limiter applied to the tracer mass field qi	p as
described in Guba et al. (2014). This limiter is employed in each
of the tests below, unless otherwise noted.

A horizontal hyperviscosity operator may be applied after each
tracer advection step to smooth the solution, using

∂qi

∂t
= −ν ∇4qi , (4)

where ν is the adjustable hyperviscosity coefficient. In practice, it
is applied in a two-stage process that uses only first derivatives. In
the first step, an auxiliary variable fi = ∇ · (∇qi) is constructed
using the discrete forms of the gradient ∇ and divergence ∇·
operators. The tracer field is then updated as follows:

qi(t + 	t) = qi(t) − 	t ν ∇ · (∇fi). (5)

The hyperviscosity may also be sub-cycled, but for the test cases
presented here, when hyperviscosity is used, it is applied only
once per time step.

3. DCMIP tests and results

DCMIP category 1 describes three tracer transport scenarios in
which analytic time-dependent wind velocity fields are prescribed
and all other dynamics routines are disabled. Each test concludes
by returning the tracers to their initial positions, in order to
provide an analytical solution for error analysis. Test output
is produced following the recommended usage and diagnostics
described in the DCMIP Test Case Document of Ullrich et al.
(2012) together with additional analysis, where relevant. Some
example results were presented in Kent et al. (2014) using
the CAM-FV and MCore finite-volume dynamical cores. In
the following analysis, output from CAM-SE is compared with
the CAM-FV and MCore models whenever possible.

3.1. DCMIP test 1-1: 3D deformational flow

3.1.1. Test case description

DCMIP test 1-1 examines the transport of passive tracers in
a three-dimensional, deformational flow. It is based on two-
dimensional tests introduced by Nair and Lauritzen (2010), with
an additional vertical wind component. It uses an isothermal
temperature field with T = 300 K throughout with an exponential
pressure distribution

p = p0 exp(−z/H), (6)

ρ = p/(RdT), (7)

with constant scale height H = RdT0/g. The density ρ is given by
the ideal gas law for dry air, and the surface geopotential �s = 0
is flat. Other test parameters are summarized in Table 2.
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Figure 2. DCMIP 1-1 horizontal cross-sections of tracers (a, c, e, g) q1 and (b, d, f, h) q3 as a function of time. Snapshots are taken at (a, b) t = 0 days,
(c, d) 6 days and (e, f) t = 12 days. (g, h) show the differences between the final and initial states. [	x = 1◦, Ne =30, Np =4, L=60, 	t =100 s, ν =0 m4s−1,
z = 5100 m, quasi-monotone limiter.]

Prescribed winds are applied over twelve model days with a
sinusoidal time dependence that reverses at day 6. The wind fields
are composed of a horizontally deformational component ua and
a horizontally divergent component ud such that u = ua + ud

where

ua = k sin2 λ′ sin(2ϕ) cos(π t /τ ) + (2πa/τ ) cos ϕ, (8)

va = k sin(2λ′) cos ϕ cos(π t /τ ), (9)

ud = (ω0a/b pt) cos λ′ cos2 ϕ cos(2π t /τ ) s2(p), (10)

vd = 0. (11)

The vertical velocity in hybrid η coordinates is

η̇ = (ω0/p0) sin λ′ cos ϕ cos(2π t/τ ) s1(p), (12)

where s1(p) and s2(p) are shape functions:

s1(p) = 1−exp

(
p−p0

bpt

)
−exp

(
pt−p

bpt

)
+exp

(
pt−p0

bpt

)
,

s2(p) = − exp

(
p − p0

bpt

)
+ exp

(
pt − p

bpt

)
. (13)
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Figure 3. DCMIP 1-1 vertical cross-sections through all four tracer fields (a, c) q1, (b, d) q2, (e, g) q3, and (f, h) q4 at the Equator, at time (a, b, e, f) t = 0 and (c, d, g, h)
t = 12 days. (i)–(l) show their difference fields. [	x = 1◦, Ne =30, Np =4, L=60, 	t =100 s, ν = 0 m4s−1, quasi-monotone limiter.]

The function s1(p) tapers the vertical velocity to 0 at the top and
bottom of the computational domain.

Tracer mixing ratios are initialized as follows:

q1 = 0.5{1 + cos(πd1)} + 0.5{1 + cos(πd2)}, (14)

q2 = 0.9 − 0.8 q2
1, (15)

q3 =

⎧⎪⎨
⎪⎩

1 if d1 < 1
2 or d2 < 1

2 ,

0.1 if z>zc and ϕc− 1
8 <ϕ<ϕc+ 1

8 ,

0.1 otherwise,

(16)

q4 = 1 − 3

10

(
q1 + q2 + q3

)
. (17)

Tracer q1 is assigned a smooth, double cosine bell pattern where
di is a scaled distance function as specified in Kent et al. (2014).
Tracer q2 is chosen to assess the ability of the scheme to maintain
a nonlinear relationship with tracer q1. Tracer q3 is composed
of two slotted ellipses centered at latitude ϕc and altitude zc,
and is designed to assess the capability of the transport scheme to
maintain monotonicity. Tracer q4 is chosen to investigate whether
a linear sum of tracers can be maintained by the transport scheme.

The test employs 60 vertical levels with evenly spaced z
coordinates ranging in height from 0 to 12 000 m with 	z =
200 m. Hybrid η levels are then assigned to be η = exp(−z/H)
using Eq. (6). The horizontal resolution for each simulation is set
to Np = 4, Ne = 30 (fourth-order polynomials with 30 elements

c© 2016 Royal Meteorological Society Q. J. R. Meteorol. Soc. 142: 1672–1684 (2016)
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Table 3. DCMIP 1-1 error norms for tracer fields at t = 12 days. CAM-
SE simulation parameters. [	x = 1◦, Np = 4, Ne = 30, L = 60, 	t = 100 s, ν =

0 m4 s−1, quasi-monotone limiter.]

Model Norm q1 q3 q4

CAM-SE �1 0.1813 0.0241 0.0013
�2 0.1518 0.2260 0.0117
�∞ 0.3198 0.8162 0.3673

CAM-FV �1 0.1210 0.0236 0.0011
�2 0.0998 0.2519 0.0130
�∞ 0.1923 0.8589 0.3990

MCore �1 0.1774 0.0251 0.0014
�2 0.1552 0.2354 0.0125
�∞ 0.3384 0.8444 0.3906

per cube-face) unless otherwise specified. This corresponds to
an average resolution of 1.0◦ (110 km) per node at the Equator.
Simulations were performed without hyperviscosity ν = 0 m4 s−1

using a time step of 	t = 100 and the default quasi-monotonic
limiter.

3.1.2. DCMIP 1-1 tracer cross-sections

Figure 2 displays horizontal cross-sections of tracer fields q1 and
q3 at a height of 5100 m (level 34 of 60 from the top) plotted
at time t = 0, 6 and 12 days. At the bottom of the figure, tracer
errors δqi = qi(τ )−qi(0) are produced by subtracting the final
state from the initial state. Areas of excess tracer are shaded red
and areas with a tracer deficit are shaded blue. The maximum and
minimum values of δqi within the cross-section are also displayed.
Note that all results have been interpolated from CAM-SE’s native
spectral-element grid to a uniform longitude–latitude grid for
visualization.

We observe that, even after significant stretching and shearing,
the general horizontal shape of the smooth tracers field q1 is
reasonably well preserved, with some latitudinal elongation. The
q3 tracer distribution also retains its slotted-cylinder shape at the
final time although with significant smoothing, producing areas
of excess tracer concentration in the central slot.

Small-amplitude oscillations are clearly visible in the solution
for tracer q3 at times t = 6 and t = 12 despite the use of the quasi-
monotone limiter. This loss of monotonicity in the mixing ratio
is most likely due to wind–mass inconsistency that commonly
arises in prescribed velocity scenarios, as discussed in Jöckel et al.
(2001) and Nair and Lauritzen (2010). While the limiter ensures
monotonicity of the tracer mass qi	p, it does not guarantee the
monotonicity of the tracer mixing ratio qi = (qi	p)/	pa due
to inconsistencies between the analytic value 	pa and numerical
value of 	p.

Figure 3 displays vertical cross-sections of the tracer fields at the
Equator at t = 0 and the final time, t = 12 days. Difference fields
are plotted at the bottom of the figure. As with the horizontal
cross-sections, the general shape and features of each tracer
distribution is maintained at the final time but with significant
smoothing of sharp features.

3.1.3. DCMIP 1-1 error norms

Error norms are computed for each tracer by comparing its final
state qτ to its initial state q0 and applying the following definitions
for the �1, �2, and �∞ norms

�1(q) = I
[|qτ − q0|

]
/I[|q0|], (18)

�2(q) =
√

I
[
(qτ − q0)2

]
/I[|q2

0|], (19)

�∞(q) = max |qτ − q0|/ max |q0|, (20)

where I is an approximation to the global integral I[x] = ∑
xjVj

and Vj is the volume associated with the value xj. This computation

(a)

(b)

Figure 4. DCMIP 1-1 error norms versus hyperviscosity: (a) Vertically shifted
error norms �1−min(�1) are plotted for each tracer qi as a function of
hyperviscosity exponent X = log10(ν). Minimum �1 error values are found in
the range from X = 13.6 to 14.0. (b) Vertically shifted error norms �2−min(�2).
Minimum �2 errors are found in the range from X = 13.0 to 13.2.

is performed on the grid-interpolated data to facilitate volume
computation.

Error norms for tracers q1, q3 and q4 are presented in Table 3
at horizontal resolutions of 1◦ × 1◦ (Np = 4, Ne = 30) and 60
vertical levels, as recommended in the DCMIP test document.
Error norms are also presented for CAM-FV and MCore,
reproduced from Kent et al. (2014). Focusing on tracer q1,
we observe that error norms for CAM-SE are quite similar to
those produced by MCore, but somewhat larger than those for
CAM-FV. From this we conclude that CAM-FV’s tracer transport
does a little better at preserving smooth tracer distributions at
the same resolution. For tracer q3, the performance of all three
dynamical cores was found to be comparable, with CAM-SE
showing a small advantage.

3.1.4. DCMIP 1-1 error norms versus hyperviscosity

While hyperviscosity is not necessary for stability in linear tracer
transport tests, it has the potential to influence the overall quality
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0

Figure 5. Tracer mixing regions. Region A is called the real-mixing region.
Region B is the un-mixing region. The remaining area is the overshooting region.

of the solution. In order to isolate its impact, a parameter study was
performed with no limiter applied and all other parameters held
fixed. The time step was fixed at 	t = 60 s, and hyperviscosity
was applied once per time step.

Figure 4(a) shows the �1 error for each tracer as a function
of the hyperviscosity exponent X, where ν = 10X m4 s−1 and (b)
shows their �2 norms. In both plots, the curves have been vertically
shifted by subtracting their minimum values to make it simpler to
observe where each minimum occurs and how sensitive it is to X.

From Figure 4, it is apparent that the use of hyperviscosity
can improve the solution. However, no single hyperviscosity
coefficient is optimal for all tracer configurations, and the
optimum value of �1 differs from that of �2. For example,
minimizing the �1 error for the double cosine bell q1 requires
X = 13.6, while the slotted ellipsoid q3 requires X = 14.0.
Optimizing �2 for tracer q3, on the other hand, requires X = 13.0,
a full order of magnitude smaller. The �1 error is observed to
be more sensitive to the parameter X than the �2 norm, as the
optimal �2 errors are more tightly clustered with an optimal value
for all tracers near X = 13.2.

3.1.5. Tracer correlations and mixing diagnostics

Measurements of the numerical mixing that occurs during the
simulation may be quantified using mixing diagnostics, which are
described in Lauritzen and Thuburn (2012) and in the appendix
of Kent et al. (2014). The mixing ratios q2 and q1 are plotted
as a scatter plot obtained by sampling points in the five vertical
levels closest to the heights of 4500, 4700, 4900, 5100, and 5300 m
(levels 33–37 of 60, as measured from the top). Initially, the
scatter points all fall on the line q2 = 0.9 − 0.8 q2

1. At the end of
the simulation, each of the points should remain on this line.
Any deviation from this represents a loss of correlation between
tracers 1 and 2.

Tracer correlation errors are classified by the region of the
correlation plot in which they lie, as illustrated in Figure 5. Points
that lie in region A (under the curve but above the dotted line)
represent values that resemble ‘real mixing’. Points that lie outside
of region A but still within the box bounding the initial range
q1 ∈ [0, 1], q2 ∈ [0.1, 0.9] lie in region B, and are said to exhibit
‘range-preserving un-mixing’. Points that lie outside of that box
are said to be ‘overshooting’.

The correlation errors are quantified by computing diagnostics
for the real mixing error �r, range-preserving un-mixing �u,
overshooting �o, and the total mixing error �m, each of which

represents an area-weighted distance from the original curve.
They are computed as follows:

�r =
∑

k

dk
	Ak

A
for all (q1,k, q2,k) ∈ A, (21)

�u =
∑

k

dk
	Ak

A
for all (q1,k, q2,k) ∈ B, (22)

�o =
∑

k

dk
	Ak

A
for all (q1,k, q2,k) /∈ A ∪ B, (23)

�m = �r + �u + �o, (24)

where dk is the normalized minimum distance from the point
(q1k, q2k) to the original distribution curve. The value A represents
the total area of the domain, and 	Ak represents the area
associated with sample point k. To provide simple area weighting,
the diagnostics are computed from lat–lon interpolated values.

Figure 6 shows an analysis of the DCMIP 1-1 tracer correlations
as a function of hyperviscosity, at time t = 12 days at a fixed
resolution of 1◦ . The shaded regions are scatter plots with q2 on
the y-axis and q1 on the x-axis arranged with a hyperviscosity
coefficient X that increases from left to right. Table 4 displays
the mixing diagnostic measurements for each case. Values for
CAM-FV and MCore are presented for comparison.

As the hyperviscosity exponent is increased, the distributions
become smoother and the scatter points move toward the
centre or ‘real mixing’ region. Real mixing may seem preferable
to overshooting or un-mixing, but points in this region are
still erroneous, as at the final time the original relationship
q2 = 0.9 − 0.8 q2

1 should be strictly maintained. Minimizing the
total area-weighted mixing error �m gives the best overall solution
at X = 14.0 with a value of �m = 4.70 × 10−3. These results are
similar to those reported for MCore, but not as good as the results
reported for CAM-FV.

3.1.6. DCMIP 1-1 mixing error versus hyperviscosity

Mixing diagnostics were measured as a function of hyperviscosity
and plotted in Figure 7(a). From this plot, it is clear that real-
mixing error (blue) increases with greater hyperviscosity and
un-mixing error (green) generally falls, although not as quickly.
Overshooting (red) exhibits a minimum value close to X = 14.25
and the solid black line represents the sum �m, or total mixing
error, which is minimized at X = 14.0.

Figure 7(b) shows total mixing error curves plotted for 1◦
simulations for both the default polynomial order (Np = 4, Ne =
30) and for simulations with a higher horizontal polynomial
order (Np = 7, Ne = 15). We see that the higher-order solution
is more accurate overall and less sensitive to low hyperviscosity,
as reducing the hyperviscosity by several orders of magnitude had
little impact on the total mixing error. On the other hand, total
mixing error rises rapidly in either case if too much hyperviscosity
is applied.

3.2. DCMIP test 1-2: Hadley-like meridional circulation

DCMIP 1-2 is a tracer advection test that mimics a Hadley-
like meridional circulation. It is similar to the test of Zerroukat
and Allen (2012) but with time-reversal added to provide an
analytical result for comparison. It is designed to investigate the
impact of horizontal–vertical spatial splitting on the accuracy of
the transport scheme. It uses the same isothermal temperature
field as the previous test. The zonal, meridional and vertical
velocity fields are prescribed to be

u=u0 cos ϕ, (25)

v= −aw0πρ0

Kztρ
cos ϕ sin(Kϕ) cz ct , (26)

w=w0
ρ0

Kρ
{K cos ϕ cos(Kϕ)−2 sin ϕ sin(Kϕ)} sz ct , (27)
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(a) (b) (c)

Figure 6. DCMIP 1-1 tracer correlation plots and normalized errors for tracer fields at t = 12 days. Red areas are scatter plots of q2 versus q1. The curved line
represents the initial relationship q2 = 0.9 − 0.8q2

1. Increasing the hyperviscosity exponent from (a) 13.1 to (b) 14.0 to (c) 15.7 reduces the un-mixing error �u at the
expense of increasing the real-mixing error ur. [	x = 1◦, Np = 4, Ne = 30, 	t = 60 s, no limiter.]

Table 4. Mixing diagnostic measurements �r, �u, �o and �m (all ×10−3) and
hyperviscosity X.

Model �r �u �o �m X

CAM-SE 1.83 1.98 2.22 6.04 13.1
2.09 1.20 1.42 4.70 14.0
6.22 0.76 2.03 9.00 15.7

CAM-FV 1.04 0.29 0.00 1.33

MCore 2.53 0.56 1.08 4.17

where ρ0 = p0/(RdT0) is the density at the surface, cz =
cos(πz/zt), ct = cos(π t/τ ), and sz = sin(πz/zt). Table 5
summarizes the various parameters in these equations.

The tracer field q1 consists of a single horizontal layer spanning
the globe between a height of z1 and z2 (m) such that

q1 =
⎧⎨
⎩

1

2

{
1+cos

(
2π(z−z0)

z2 − z1

)}
if z1 < z < z2,

0 otherwise.
(28)

As specified by the DCMIP test case document, simulations
were performed at three resolutions: 2◦×2◦ with 30 vertical levels
(2◦ L30), 1◦×1◦ with 60 vertical levels (1◦ L60), and 0.5◦×0.5◦
with 120 vertical levels (0.5◦ L120). The vertical levels are evenly
spaced in z, and the η levels are given by η = exp(−z/H). These
simulations were performed using the quasi-monotonic limiter
and no hyperviscosity.

Figure 8 shows vertical cross-sections of the tracer q1 at time
t = 12 h and t = 24 h at all three resolutions. From the 2◦ L30
cross-section, it is evident that gaps appear in the solution at
t = 12 h where the tracer field is highly stretched and under-
resolved by the grid (Figure 8(a)). At t = 24 h (Figure 8(b)), gaps
remain in the solution in regions close to 30◦N and 30◦S, which is
similar to results produced by the CAM-FV and MCore models.
However, at the 1◦ L60 resolution (Figure 8(c, d)), the gapping
is already greatly reduced, and appears to be less significant than
that found in the other two models. At 0.5◦ L120 (Figure 8(e, f))
the tracer field is fully resolved throughout the simulation and
the distortions at 30◦N and 30◦S have been nearly eliminated.

Figure 9 displays error norms produced by DCMIP test
1-2 computed by comparison of the initial and final tracer
distributions. Table 7 displays CAM-SE error norms measured
with and without the quasi-monotonic limiter at the default
polynomial order Np = 4, as well as error norms for a high-order
configuration Np = 7. Results from the CAM-FV and MCore
models are also reproduced from Kent et al. (2014) to facilitate
comparison.

At 1◦, �1 and �2 errors of CAM-SE were somewhat
smaller than those of CAM-FV and generally similar to those
produced by MCore for this test. The high-order configuration
Np = 7 exhibited somewhat greater accuracy than the Np = 4
configuration, particularly at the coarsest resolution 	x = 2◦.

The rightmost column of Table 7 shows the error convergence
rates obtained by averaging rates for 2◦ → 1◦ and 1◦ → 0.5◦.
The error convergence rate for each norm was found to be close
to 2, confirming that the model exhibits second-order accuracy
for this test. To obtain a more precise measurement of the
order, a grid-size refinement study was performed for the Np = 4
configurations using multiple resolutions ranging from 2◦ to 0.5◦,
as plotted in Figure 9.

A least-squares linear fit shows that the �1 error converges
under grid-size refinement at a rate of O(	x2.32) when no limiter
is applied and a small 	t = 5 s time step is used. Application
of the quasi-monotonic limiter reduced the convergence rate to
O(	x2.18). Increasing the time step to 	t = 60 reduced the order
still further as the time-discretization error began to dominate
the spatial-discretization errors at resolutions finer than 1◦.

To determine if second-order accuracy was impacted by level
spacing, the convergence study was repeated using equally spaced
η levels rather than equally spaced z levels. This arrangement
produces levels that are packed more tightly at the bottom of the
atmosphere than at the top. These simulations exhibited an error
that was roughly 25% smaller, at the same resolution. However,
the �1 error exhibited the same O(	x2.3) order of convergence
under grid refinement.

3.3. DCMIP 1-3: thin cloud advection over orography

DCMIP 1-3 investigates the influence of orography on tracer
advection. Several thin cloud-like layers are transported laterally
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(a)

(b)

Figure 7. DCMIP 1-1 Mixing diagnostics versus hyperviscosity: (a) Mixing
diagnostics as a function of the hyperviscosity exponent X = log10(ν) for Ne = 30,
Np = 4, 	x = 1◦. Adding hyperviscosity reduces un-mixing error �u but increases
real-mixing error �r. The overshooting error lu is minimal at X = 14.25 and the
total mixing error is minimized at X = 14 with �m = 4.70 × 10−3. (b) Total
mixing error is compared for Np = 4 and Np = 7, both at 	x = 1◦. The higher-
order simulation exhibits a lower minimum mixing error of �m = 3.22 × 10−3

and requires a smaller hyperviscosity exponent of X = 13.5.

across the globe, completing one orbit in a period of τ = 12 days.
As with the previous tests, an isothermal atmosphere is employed
with a temperature T0 = 300 K. The zonal, meridional, and
vertical wind speed components are

u = u0 (cos ϕ cos α + sin ϕ cos λ sin α) , (29)

v = −u0 sin λ sin α, (30)

w = 0, (31)

describing ‘solid-body’ rotation with the rotation axis tilted at an
angle of α = 30◦ from the Earth’s axis of rotation.

Due to the use in CAM-SE of hybrid terrain-following vertical
coordinates, horizontal motion produces an effective vertical flux
causing the tracers to pass through several vertical η levels. This
flux is related to the vertical pressure-velocity ω through its

Table 5. Some constants used in test 1-2.

Parameter Value Description

K 5 Number of overturning cells
pt 254.944 hPa Pressure at the model top
p0 1000 hPa Reference pressure
T0 300 K Isothermal temperature
u0 40 m s−1 Reference zonal velocity
w0 0.15 m s−1 Reference vertical velocity
z1 2000 m Lower boundary of tracer layer
z2 5000 m Upper boundary of tracer layer
zt 12 000 m Height of model top
τ 1 day Period of motion

material derivative such that

ω = ∂ps

∂t
+ u∇ηp + η̇

∂p

∂η
.

Using ∂ps/∂t = 0 and ω = 0, the vertical flux needed for tracer
transport is simply

η̇
∂p

∂η
= −u · ∇ηp. (32)

The influence of the terrain-following coordinates is more
pronounced in regions with steeper orography. Some relevant
parameters for DCMIP test 1-3 are listed in Table 6. The full
description of the initial conditions is provided in Kent et al.
(2014).

For this test, the surface elevation is

zs =
⎧⎨
⎩

h0

2

{
1+cos

(
π

rm

Rm

)}
cos2

(
π

rm

ζm

)
if rm <Rm,

0 otherwise,
(33)

where rm is the great-circle distance on the unit sphere measured
from the centre of the mountain range at (λm = 3π/2, ϕm = 0).
This equation describes a Schär-type mountain range (Schär
et al., 2002) with steep mountains that decay in height over a
distance Rm.

Three tracer fields are used to simulate thin cloud layers,
stacked vertically at different heights. Tracer layers q1 and q2 are
disc-shaped and the upper layer q3 is cylindrical. Tracer q4 is the
sum of the other three. Figure 10 provides a three-dimensional
view of the initial tracer configuration and surface orography.

Layer interfaces are placed at evenly spaced heights zi (in
the flat region) spanning an altitude of zs = 0 to zt = 12 000 m.
The ηi interfaces are then chosen to match those levels in the
mountain-free region such that

ηi = e−zi/H, Bi =
[

ηi − ηt

1 − ηt

]c

, Ai = ηi − Bi. (34)

The smoothing exponent c controls the rate at which η

transforms from a terrain-following coordinate to a pure pressure
coordinate with height, with a default value of c = 1 for this test.
The horizontal resolution for all runs was fixed at 1◦ with L = 30,
60, or 120 vertical levels. The time step was 	t = 100 s, with the
quasi-monotonic limiter, and no hyperviscosity.

Figure 11 displays an equatorial vertical cross-section of tracer
field q4 at time t = 0, 6 and 12 days. (d,e,f) display q4 in longitude
versus η coordinates and (a,b,c) display longitude versus z.
Surfaces of constant η (grey) appear as simple horizontal lines in
η coordinates and highly oscillatory lines in z.

The terrain-following coordinates cause significant distortion
of the tracer field over the mountainous region, as seen in
Figure 11(e) at time t = 6 days. Comparing the final state at
t = 12 days with the initial state, we observe that the horizontal
tracer distribution has been well preserved, while the vertical
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(a)

(b)

(c)

(d)

(e)

(f)

DCMIP 1-2   1 dg   L60   t = 24 h

DCMIP 1-2   0.5 dg   L120   t = 24 h

DCMIP 1-2   2 dg × L30   t = 24 h

DCMIP 1-2   1 dg   L60   t = 12 h

DCMIP 1-2   0.5 dg   L120   t = 12 h

DCMIP 1-2   2 dg × L30   t = 12 h
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Figure 8. DCMIP 1-2. Latitude–height cross-sections of q1 at (a, c, e) t = 12 h and (b, d, f) t = 24 h at longitude λ = 180◦. At (a, b) 2◦ resolution, the simulation
is not fully resolved and gapping is visible in the highly stretched regions near ϕ = 30◦S and 30◦N. At (e, f) 0.5◦ resolution the simulation is fully resolved and the
gapping has mostly been eliminated. [	t = 60, ν = 0, Np = 4, quasi-monotone limiter]

distribution exhibits moderate diffusion and distortion. The
magnitude of the distortion is smaller for the higher cloud
layers, as the η coordinates are less oscillatory near the top of the
domain. The results look somewhat better than those of CAM-FV
and are similar to those of MCore.

Table 8 shows the error norms for test 1-3 runs with vertical
resolutions of 30, 60, and 120 levels (	z = 400, 200, and 100 m
grid spacing), with a fixed lateral resolution of 1◦. Using the
default value of c = 1 we observe CAM-SE error norms that
are somewhat smaller than CAM-FV and somewhat larger
than MCore. Increasing the smoothing coefficient to c = 2
reduces the errors significantly, indicating a high sensitivity to
this parameter. The right-hand columns indicate that CAM-SE
exhibits error convergence rates below first-order under vertical
level refinement, which is consistent with the other two models.
Overall, it is clear that models using terrain-following coordinates
have difficulty producing accurate results in the presence of steep,
rapidly oscillating orography.

Although increasing the vertical resolution produces little
benefit in this test, the accuracy of the solution may be enhanced
by reducing the impact of the orography. In Figure 12, the �1 error
is plotted as a function of the vertical smoothing exponent c. As

the value of c is increased, the impact of the orography becomes
more strongly confined to the lower levels, thereby reducing the
errors in the upper atmosphere. By examining the green line
representing the �1 error for L = 60, one can see that increasing
the smoothing exponent from c = 1 to c = 3.5 reduces the error
by roughly a factor of 3. Increasing c beyond 3.5 began to
adversely impact the maximum stable time step and the stability
of the vertical remap algorithm.

4. Conclusions

The DCMIP 1-x tracer transport tests were performed by applying
the advection routines of CAM-SE with all other dynamic routines
suppressed. The default tracer scheme was used, which employs
spectral elements in the horizontal and second-order Lagrangian
transport with remap in the vertical.

The DCMIP 1-1 test examines several tracers with strong
horizontal deformation and vertical oscillation. At the final
time of t = 12 days, the tracer distributions were found to be
reasonably well preserved with some diffusion of sharp features.
Error norms were generally similar to those produced by CAM-FV
and MCore. CAM-SE exhibited somewhat better error norms for
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Figure 9. DCMIP 1-2: Error convergence under grid refinement The convergence
rate is computed more accurately by a grid-size refinement study where NE is
the number of elements per cubed-sphere face, which reveals that for Np = 4,
the �1 error converges at O(	x2.3). The order is reduced slightly when the
quasi-monotonic limiter is applied, and when large time steps are used.

Table 6. Some constants used in test 1-3.

Parameter Value Description

h0 2000 m Mountain-range height
pt 254.944 hPa Pressure at model top
Rm 3π/4 rad Mountain-range radius
T0 300 K Isothermal temperature
u0 2πa/τ Maximum wind speed
zt 12000 m Model top
zp,1 3050 m Altitude of cloud 1
zp,2 5050 m Altitude of cloud 2
zp,3 8200 m Altitude of cloud 3
	zp,1 1000 m Thickness of cloud 1
	zp,2 1000 m Thickness of cloud 2
	zp,3 1000 m Thickness of cloud 3
α π/6 rad Advection angle
ζm π/16 rad Mountain oscillation

half-width
τ 12 days Period of motion

Table 7. DCMIP 1-2: Error versus resolution. Tracer error norms are shown
for each solver at low, medium, and high resolutions, along with the average
convergence rate for each norm. Roughly second-order accuracy is observed for

CAM-SE.

Norm 2◦ L30 1◦ L60 0.5◦ L120 Rate

CAM-SE �1 0.1320 0.0291 0.0100 1.86
Np = 4 �2 0.1448 0.0322 0.0122 1.79
qm-limiter �∞ 0.3796 0.0977 0.0461 1.52

CAM-SE �1 0.1255 0.0262 0.0054 2.27
Np = 4 �2 0.1374 0.0288 0.0073 2.12
no limiter �∞ 0.3857 0.1977 0.0373 1.68

CAM-SE �1 0.0906 0.0200 0.0047 2.13
Np = 7 �2 0.0856 0.0261 0.0071 1.80
no limiter �∞ 0.5196 0.0842 0.0306 2.04

�1 0.1810 0.0411 0.0124 1.93
CAM-FV �2 0.2047 0.0536 0.0159 1.84

�∞ 0.4705 0.1575 0.0473 1.66
�1 0.1368 0.0286 0.0063 2.22

MCore �2 0.1659 0.0462 0.0113 1.94
�∞ 0.4214 0.1586 0.0435 1.64
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Figure 10. DCMIP 1-3: Tracer and orography isosurfaces. The q = 0.01
isosurfaces are plotted for the initial conditions for tracers q1 (red), q2 (green),
q3 (blue) and surface elevation zs (grey) at t = 0 . Tracers fields q1 and q2 are
disc shapes, while q3 is cylindrical. Tracer q4 is the sum of all three. At the surface
a rapidly oscillating Schär-type mountain range is employed with a maximum
mountain height of z = 2000 m.

the slotted ellipsoid distribution q3. CAM-FV exhibited somewhat
better error norms for the double cosine bell distribution q1.
Error regression on the hyperviscosity parameter ν revealed no
single optimal value. Rather, each tracer configuration and error
norm had a slightly different optimum. Optimal �2 norms were
obtained in the range ν = 1013 to 1013.2 m4 s−1. Optimal �1

norms were obtained in the range ν = 1013.6 to 1014 m4 s−1.
Minimal mixing error was obtained at ν = 1014. Mixing errors
were comparable with those reported for MCore, but were
not as good as CAM-FV. At fixed resolution and time step,
increasing the polynomial order to Np = 7 was found to improve
the accuracy and reduce the sensitivity of the mixing error to
hyperviscosity.

DCMIP 1-2 examines horizontal–vertical coupling in a
Hadley-like circulation. Vertical cross-sections were similar to
those of CAM-FV and MCore, with some tracer gapping occurring
near 30◦N and 30◦S. At the default resolution Np = 4, error
norms were found to be smaller than CAM-FV and similar
to MCore. The high-resolution configuration Np = 7 produced
a small improvement over Np = 4. Error convergence under
simultaneous grid-size refinement of the horizontal and vertical
grid was also studied. The �1 norm converged with order 2.3 with
no limiter applied and with order 2.2 with the quasi-monotonic
limiter.

DCMIP test 1-3 examines the effects of terrain-following
coordinates on thin tracer clouds. The error norms produced by
CAM-SE were a little better than CAM-FV and a little worse than
those of MCore. Vertical refinement, with horizontal resolution
held fixed, produced little to no improvement in the error as
increasing the number of vertical layers increases accuracy but
also increases the distortion due to flux between the layers.
However, it was possible to significantly improve the accuracy
of the simulation by increasing the smoothing exponent, thereby
reducing the impact of the terrain-following coordinates on the
upper atmospheric levels.

Overall the default tracer transport scheme in CAM-SE
exhibited error norms comparable to CAM-FV and MCore on
all three tests. The scheme was verified to achieve second-order
accuracy with or without limiting. However, the quasi-monotonic
limiter was unable to maintain strict monotonicity of the mixing
ratio for these tests, most likely due to mass–wind inconsistency,
a problem which is common to prescribed-velocity scenarios.
As with the other dynamical cores, horizontal transport of thin
tracer clouds over a Schär mountain range was found to be
particularly challenging due to the numerical mixing caused by
terrain-following coordinates. A number of new techniques are
being actively developed in the CAM-SE context, including high-
order vertical representations, discontinuous-Galerkin methods,
semi-Lagrangian transport schemes, and alternate boundary
implementations, each of which has the potential to improve
upon these results.

c© 2016 Royal Meteorological Society Q. J. R. Meteorol. Soc. 142: 1672–1684 (2016)
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Figure 11. DCMIP 1-3: Vertical cross-sections of the tracer field q4 are plotted at (a, b) t = 0 days, (c, d) 6 days and (e, f) 12 days on a 1◦ grid with 60 vertical levels
(	z = 200 m). Thin cloud-like tracers fields are transported horizontally over rapidly oscillating orography causing them to interact with the terrain-following vertical
levels. (a,b,c) show the tracer in z-coordinate space, and (d,e,f) are plotted in η-coordinate space. As the tracers cross the mountain, vertical oscillation is induced
between the η levels, which produces some distortion. [	x = 1◦, Np = 4, Ne = 30, 	t = 100, ν = 0, c = 1, quasi-monotone limiter]

Acknowledgements

We would like to acknowledge Ben Jamroz, Colin Zarzycki,
Mike Levy, and Alexandra Jahn for their helpful feedback and
useful discussions. This work was supported by the DOE BER
SciDAC grant DE-SC 0006959: ‘A petascale non-hydrostatic

atmospheric dynamical core in the HOMME framework’. CJ was
supported by the DOE Office of Science grants DE-SC0003990
and DE-SC0006684. Computational resources were provided by
the Extreme Science and Engineering Discovery Environment
(XSEDE), which is supported by National Science Foundation
grant number ACI-1053575.

Table 8. DCMIP 1-3: Normalized errors for the tracer field q4 at t = 12 days and the average convergence rate for each norm. Simulation parameters:
[	x = 1◦, Np = 4, Ne = 30, 	t = 100 s, ν = 0, quasi-monotonic limiter.]

Normalized error Convergence rate
Norm 1◦ L30 1◦L60 1◦L120 L30→L60 L60→L120 Average

CAM-SE �1 0.90 0.53 0.42 0.78 0.33 0.55
�2 0.56 0.35 0.32 0.68 0.13 0.41

(c = 2) �∞ 0.72 0.63 0.70 0.20 −0.17 0.02
CAM-SE �1 1.25 1.12 1.11 0.15 0.13 0.08

�2 0.75 0.68 0.68 0.14 −0.0072 0.07
(c = 1) �∞ 0.92 0.91 0.88 0.02 0.0039 0.03
CAM-FV �1 1.35 1.33 1.31

�2 0.81 0.77 0.78
�∞ 0.88 0.85 0.91

MCore �1 1.08 0.89 0.83
�2 0.70 0.57 0.55
�∞ 0.81 0.71 0.73
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Figure 12. Test 1-3: �1 error versus smoothing exponent c is displayed for vertical
resolutions L = 30, 60, and 120 at day 12. Increasing the value of c reduces the
impact of the orography on the upper levels, thereby improving the accuracy.
[	x = 1◦, Np = 4, Ne = 30, 	t = 60 s, ν = 0, no limiter.]
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