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a b s t r a c t

A key step in implementing Bayesian networks (BNs) is the discretization of continuous variables. There
are several mathematical methods for constructing discrete distributions, the implications of which on
the resulting model has not been discussed in literature. Discretization invariably results in loss of in-
formation, and both the discretization method and the number of intervals determines the level of such
loss. We designed an experiment to evaluate the impact of commonly used discretization methods and
number of intervals on the developed BNs. The conditional probability tables, model predictions, and
management recommendations were compared and shown to be different among models. However,
none of the models did uniformly well in all comparison criteria. As we cannot justify using one dis-
cretization method against others, we recommend caution when discretization is used, and a verification
process that includes evaluating alternative methods to ensure that the conclusions are not an artifact of
the discretization approach.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Bayesian networks (BNs) are probabilistic graphical models that
consist of nodes and directed links depicting the dependencies
among the variables in the model (Jensen, 2001). Probabilistic re-
lationships among the variables are expressed using conditional
probability tables (CPTs). BNs are promising tools to aid reasoning
and decision making under uncertainty. The term Bayesian
network was first introduced by Pearl (1982) and Spiegelhalter and
Knill-Jones (1984) in the field of expert systems. Some of the early
appearances of BNs in environmental modeling were by Varis and
Kuikka (1997), Varis (1997), and Reckhow (1999).

Several distinct advantages of BNs make them popular for
environmental modeling (Kelly et al., 2013). BNs' modularity en-
ables integrating multiple ecosystem components or aspects of the
problem (e.g. science network and management network in
Johnson et al. (2010)). This is desirable in environmental modeling
due to the complexity of natural ecosystems and the associated
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decision-making processes. Furthermore, BNs can accommodate
various knowledge sources and data types such as expert knowl-
edge, previous data from the same system or similar systemswith a
transparent definition of prior knowledge. Another methodological
advantage is the suitability to both data-rich and data-poor eco-
systems. BNs can be developed with minimal data in a data-poor
ecosystem and as more data become available the model can be
updated. Uncertainty is inherent in environmental models due to
natural ecosystem variability, current knowledge of environmental
processes, model structure uncertainty, data and observation (e.g.,
observation error, missing data), and computational restrictions.
BNs explicitly represent uncertainty by conditional probability
distributions for each node and the uncertainty is propagated
through the model and presented in the final results. Finally, the
capacity of BNs to incorporate new data or updated information
using the Bayes' theorem makes them particularly valuable in the
context of adaptive management of ecosystems.

The aforementioned advantages of BNs have resulted in many
applications in the environmental sciences over the last decade,
including natural resources management (McCann et al., 2006;
Castelletti and Soncini-Sessa, 2007; Dorner et al., 2007; Farmani
et al., 2009), ecological risk assessment (Borsuk et al., 2004; Pollino
et al., 2007; Barton et al., 2008; Malekmohammadi et al., 2009), and
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integratedmodels (Bromley et al., 2005; Croke et al., 2007; Johnson
et al., 2010; Kragt et al., 2011). While BNs have many advantages, a
current limitation in their practical implementation is that most
software cannot accommodate continuous variables, thus binning
or discretization is required for model development (Death et al.,
2015).

Aguilera et al. (2011) examined 118 papers published between
1990 and 2010 related to the applications of BNs in the environ-
mental sciences. Among these papers, 52.6% used discrete data and
30.7% used some form of discretization method to convert
continuous data; however, 48.6% of the papers did not include any
description about the discretization process, 25.7% used experts to
discretize the continuous data into intervals, 2.9% used equal in-
terval, and 2.9% used equal quantile, and 2.9% used the default
method of the software (Aguilera et al., 2011).

Although discretization is common in a BN's implementation, it
has the potential to result in loss of information, and the conse-
quences in inference and decision-making have not been well-
explored (Death et al., 2015). In this paper, we investigate how
discretization may result in differing decisions, as various dis-
cretization methods lead to different characterization of the un-
derlying continuous distribution. We used long-termwater quality
monitoring data from a large number of lakes in Finland and
examined the well-studied relation among chlorophyll a, total
phosphorus, and total nitrogen in lakes to evaluate the effects of
discretization methods on the final model.
2. Material and methods

2.1. Study design

There are two decisions to be made when discretizing contin-
uous data: (1) the discretization method and (2) the number of
break points/intervals. We designed an experiment to assess the
effect of three commonly used discretization methods and the
number of break points/intervals on the resultant BNs. The BNs
presented here are simple and consist of three nodes describing the
relation among total nitrogen (N), total phosphorus (P), and chlo-
rophyll a (Chl a) concentrations in Finnish lakes (Fig. 1).

Nine BNswere developed, each corresponding to one of the nine
combinations of discretization methods and number of break
P Chla

N

Fig. 1. Directed acyclic graph.
points. The BNs were fitted to discretized data using the bnlearn
package in R developed for structure learning, parameter learning,
and inference (Scutari, 2010; Nagarajan et al., 2013; R Core Team,
2014). The code is available as part of an online supplementary
material and the results presented here are reproducible (Nojavan
et al., 2015).

BNs are defined qualitatively as directed acyclic graphical (DAG)
models with conditional probability tables (CPTs) depicting the
quantitative dependencies among the variables. The DAG and CPTs
represent the model's structure and parameters, respectively. The
structure shows cause-effect relations of the underlying system.
The structure of this paper's example is formed based on two
criteria. Firstly, data availability is an important concern when
developing empirical models. While nitrogen and phosphorus
loading to the lakes are the root cause of the Chl a concentration
variation, such data is not available in many cases. Finnish lakes
(Malve and Qian, 2006) and the National Lakes Assessment (NLA)
(USEPA, 2009) data sets are examples of such data availability
imposed restrictions on model structure. Secondly, our goal here
was to keep the example structure as simple as possible to illustrate
the impact of discretization on model results. We will discuss the
aforementioned two points in detail in Section 4.

The structure of this paper's example is based on the literature
findings on the dependency of Chl a on N and P (Dillon and Rigler,
1974; Smith,1982) applied to the Finnish lake data (Malve and Qian,
2006). The structure is specified using the modelstring function
from the bnlearn package. The conditional probability table for
each node is calculated as Prðy2kjxiÞ, where xi is the set of all
parent nodes for y and k is the kth interval. N and P are considered
root nodes, as they do not have any parents; hence, the CPTs for
them is reduced to the prior probability distributions from the
training data. The CPT for the Chl a node is computed by
PrðChla2kjN; PÞ. The CPT estimation is done using the bn.fit func-
tion from the bnlearn package.

2.1.1. Discretization methods
We use three commonly used discretization methods, each

designed to capture certain features of the data distribution, to
discuss the potential issues.

2.1.1.1. Equal interval. Equal interval is a discretization method in
which the data are divided into equal length intervals. This method
is ideal when the data distribution is roughly uniform. When the
underlying distribution of the variable is not uniform or when
outliers are present in the data, the equal interval method can be
problematic (e.g., resulting in intervals with few observations). In
our dataset, there are several unusually low and high nitrogen
concentration values. Using three intervals, discretization with
these extreme data points included, results in the following break
points (on the logarithmic scale): 3.434, 5.665, 7.896, 10.127 (i.e.,
low if N2(3.434e5.665), medium if N2(5.665e7.896), and high if
N2(7.896e10.127)). The low nitrogen interval includes only ten
observations (0.05% of all observations). In contrast, the dis-
cretization with the “outliers” removed results in the following
break points: 4.500, 5.818, 7.137, 8.455. The definition of low ni-
trogen, on the logarithmic scale, changes from <5.665 to <5.818
(high from >7.896 to >7.137).

Additionally, many kinds of data, particularly pollutant con-
centration data, are right-skewed and are often log-transformed
before analysis to make their distribution more symmetric (Koch,
1966; Ott, 1990). The equal interval discretization method is not
invariant to nonlinear transformations, such as a log-
transformation, where the relative spacing among observations is
not preserved. Hence, the decision to log-transform the variables
impacts the intervals and final results.
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2.1.1.2. Equal quantile. Equal quantile (or equal frequency) dis-
cretization method divides data into groups of (approximately)
equal sample size. This method is designed to capture distributions
withoneormoreconcentrated “modes”. The equal quantilemethod,
when performed unsupervised using a software, can result in
assignment of the same value to different intervals, depending on
how the discretizationmethod is implemented, if there aremultiple
occurrences of the same value (Chen and Pollino, 2012). The order of
the observations is important for thismethod; however, the relative
spacing among observations is irrelevant. Hence, equal quantile
discretization is not affected by non-linear transformations.

2.1.1.3. Moment matching. Moment matching discretization
method matches the moments of the discretized distribution with
the moments of the continuous data. This method is designed to
capture the data distribution in a systematic way. The discretized
data distribution will have the same moments as the continuous
data distribution. The following set of equations is solved to find n
break points X1,X2, …,Xn and associated discrete probability dis-
tribution P1,P2, …,Pn.

P1X1þP2X2þ…þPnXn ¼1s tmomentðmeanÞ
P1ðX1�meanÞ2þ…þPnðXn�meanÞ2 ¼2ndmomentðvarianceÞ

«

P1ðX1�meanÞ2n�1þ…þPnðXn�meanÞ2n�1 ¼ð2n�1Þmoment
P1þP2þ…þPn ¼1

As the number of the moments being matched increases, the
discrete distribution becomes a more accurate approximation of
the continuous distribution; however, the number of equations in
the moment matching approach increases linearly with the num-
ber of break points (2*n�1). Our objective is then to find a point
that is feasible to all these equations (i.e., constraints). This leads to
an optimization problem that is nonlinear and non-convex. This
class of optimization problems are generally very hard to solve,
even numerically, as the number of variables and/or constraints
increase. Because the solution approach essentially involves an
exhaustive search of the entire space, the computational
complexity of the problem grows exponentially with the number of
break points. In particular, the problem becomes quickly intractable
as the number of break points exceeds four. Furthermore, the
increased number of intervals in BNs is an additional complexity as
described below (see section 2.1.2).

2.1.2. Number of intervals
Ecological models using BNs typically include 2e10 intervals

(Uusitalo, 2007); however, we chose three to five as the number of
intervals, a more realistic range considering the restrictions
commonly imposed by data availability and model complexity. It
may seem that more intervals would better represent continuous
data; however, the size of the conditional probability table for every
node, calculated as the product of the number of intervals of that
node and the number of intervals of each parent node, also in-
creases. Even in a simple three node network such as our example
(Fig. 1), the difference between three and five intervals for each
variable results in calculating 27 (33) versus 125 (53) conditional
probabilities for Chl a. Thus, a large data set is required to justify
using many intervals, and even then some conditional probabilities
may be based on relatively few observations. Therefore, although a
model may be more precise as the number of intervals increases,
themodel is not necessarily more accurate (Marcot et al., 2006).We
categorized the continuous data set into the following number of
intervals and labeled them accordingly:

� Three (Low, Medium, and High)
� Four (Low, Medium, Medium High, and High)
� Five (Low, Medium Low, Medium, Medium High, and High)

2.2. Data

We used lake monitoring data from Finland reported by Malve
and Qian (2006). The large number of lakes (z2289) in Finland,
coupled with long-term monitoring from 1988 to 2004 during July
and August resulted in a rich data set (n ¼ 19,247). Our example BN
(Fig. 1) describes the relationships among N (mg L�1), P (mg L�1), and
Chl a (mg L�1). A scatterplot matrix indicates that these three var-
iables are strongly correlated, thus are suitable for development of a
BN that will quantify these dependencies (Fig. 2). The correlation
between N and P concentration is the result of a common cause,
nutrient loading; however, as discussed in Subsection 2.1 and
Section 4, to demonstrate the impact of discertization on BNs we
will keep the model structure simple. They are also approximately,
marginally, normally distributed, with most mass near the center
and narrow relatively symmetric tails.

2.3. Comparison

We use both graphical and numerical comparisons to illustrate
inconsistencies in marginal distributions obtained using the three
alternative discretization methods and differing number of in-
tervals. Using graphical tools, we compare the resultant, dis-
cretized, marginal Chl a distributions with one another and with
the empirical, marginal Chl a distribution. Our goal in comparing
the marginal distributions is to show discretization changes the
starting point, data set, of BN's development and this would impact
the results as a consequence.

To examine the effect of the discretization method and the
number of break points on predictive accuracy we used a cross-
validation procedure. The data were randomly divided into two
subsets for training and testing purposes; the training data held
90% of the observations and the testing subset contained 10%. The
training dataset was used to fit the BN model and the resulting
model was used to predict Chl a in the testing dataset. This process
was repeated 10 times. Each time the differences between each
model's predicted Chl a (represented by the midpoint of the pre-
dicted interval) and the observed Chl awere used to calculate three
criteria, introduced by Marcot et al. (2006), for assessing the
model's predictive accuracy. These criteria include:

1. Sum of squared errors (SSE) - sum of the squared difference
between the predicted and the observed;

2. Model accuracy e the percent of the total number of cases for
which the actual intervals and predicted intervals are equal,
measured by a confusion matrix. A confusion matrix is a square
matrix with the number of rows (1,/,i,/,I) and columns
(1,/,j,/,J) the same as the number of intervals of the variable.
The (i,j) element of the matrix represents the number of obser-
vations with an observed interval i and predicted interval j; and

3. The area under the receiving operating characteristic curve
(AUC) e the probability of a true positive outcome (the pro-
portion of actual observations which are correctly classified)
versus a false positive outcome (accuracy of data classification)
(Bradley, 1997). A model with perfect predictions would have an
AUC equal to 1.

3. Results

3.1. Marginal Chlorophyll a distribution comparison

Following, we highlight the discrepancy among the marginal



Fig. 2. Scatter plot matrix displays the Finnish lake data set of the variables chlorophyll a, nitrogen, and phosphorus in the logarithmic scale.
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distributions that is the immediate result of discertization. We
emphasize the differences among the marginal distributions as the
BNs are developed based on the discretized data set. Hence, if we
start with different data sets, the results would not be similar.
Marginal distributions differ markedly among the three dis-
cretization methods, even when the same number of intervals is
used for each method (Fig. 3). In no instance do the interval end-
points coincide (except for the Chl a extremes), and the proportion
of observations within corresponding intervals differs considerably
among methods. For example lower tail areas range from 3% (equal
interval) to 40% (moment matching) for the three interval dis-
cretization, 0.4% (equal interval) to 26.2% (moment matching) for
the four interval discretization, and 0.2% (equal interval) to 20%
(equal quantile) for the five interval discretization. Middle intervals
range from 33% (equal quantile) to 85% (equal interval) for the three
interval discretization, and 20% (equal quantile) to 61.8% (equal
interval) for the five interval discretization. Generally, the sym-
metry and narrow tails of the empirical distribution (Fig. 2) is re-
flected in the equal interval method, but is poorly captured in the
equal quantile approach. The moment matching method tends to
better reflect the empirical distribution as the number of intervals
increases from three to five. Similar discrepancies are apparent
when comparing the empirical distributions of phosphorus and
nitrogen from the observed data (Fig. 2) to discretized distributions
depicted in supporting material (Nojavan et al., 2015). As an
example, probabilities of phosphorus in low, medium, and high
change significantly among discretization methods (Figures in
supplementary material (Nojavan et al., 2015)).
3.2. Conditional Chlorophyll a distribution comparison

Several examples of pronounced differences in the conditional
probabilities of Chl a among the three discretization methods,
given the states of parent nodes N and P, are highlighted in CPTs for
the three-interval discretization (Tables 1e3). When N is “low” and
P is “high” the equal interval method indicates that the probability
of Chl a being “high” is 0.00 (Table 1), while the equal quantile
method indicates that a high Chl a has a 0.18 probability (Table 2)
and moment matching indicates a 0.43 probability (Table 3).
Similarly, when N is “medium” and P is “low” the probabilities of
Chl a being low are 0.03, 0.60, and 0.66 for equal interval (Table 1),
equal quantile (Table 2), and moment matching (Table 3), respec-
tively. And finally, when N and P are both “high”, the probability
that Chl a is “low” is 0.00 for equal interval (Table 1), 0.54 for equal
quantile (Table 2), and 0.76 for moment matching (Table 3),
respectively.

We note that these discrepancies arise because the definitions of
low, medium, and high, commonly used categories, differ among
discretization methods resulting in a communication problem. For
example, high Chl a is defined as concentrations greater than 3.51,
2.64, and 3.39 (mgL�1 in log scale) using the equal interval, equal
quantile, and moment matching methods, respectively (Fig. 3).
3.3. Prediction comparison

BNs discretized using different methods result in differing
future predictions. We used the BNs generated from the training
dataset (90% of the original data set) to predict the testing data set
(the remaining 10% of the original data set). Confusion matrices
summarize the predictive accuracy in terms of percent of correctly
predicted observations (Table 4). Using the equal interval method,
the resulting BNmodel predicts Chl a to be in “low”, “medium”, and
“high” categories with probabilities 0%, 96%, and 4%, respectively.
The model based on equal quantile method predicts Chl a to be in
“low”, “medium”, and “high” categories with probabilities of 37%,
32%, and 31%, respectively. The moment matching model predicts
Chl a to be in “low”, “medium”, and “high” categories with proba-
bilities of 41%, 46%, and 13%, respectively. Our predictions change
significantly from one method to the other. The discrepancy in
predictions is initiated by different CPTs, as CPTs define the



Table 1
Conditional probability table for chlorophyll a node in the BN discretized using equal
interval method. Each number represents the probability of chlorophyll a taking any
of its discrete states, low (L), medium (M), and high (H), given the states of nitrogen
and phosphorus. For example, the probability of log chlorophyll a concentrations
being between 0.603 and 3.51 mg/L is 0.21 (the bold and underlined number) given
that nitrogen concentrations are between 5.82 and 7.14 and phosphorus concen-
trations are between 4.83 and 7.24.

Nitrogen L:[4.5,5.82]
Phosphorus L:[0,2.41] M:(2.41,4.83] H:(4.83,7.24]

Chlorophyll a L: [�2.3,0.603] 0.21 0.03 0.00
M: (0.603,3.51] 0.79 0.97 1.00
H: (3.51,6.41] 0.00 0.00 0.00

Nitrogen M: (5.82,7.14]
Phosphorus L:[0,2.41] M:(2.41,4.83] H:(4.83,7.24]

Chlorophyll a L: [�2.3,0.603] 0.03 0.00 0.02
M:(0.603,3.51] 0.97 0.86 0.21
H:(3.51,6.41] 0.00 0.13 0.77

Nitrogen H:(7.14,8.46]
Phosphorus L: L:[0,2.41] M:(2.41,4.83] H:(4.83,7.24]

Chlorophyll a L:[�2.3,0.603] 0.00 0.00 0.00
M:(0.603,3.51] 1.00 0.29 0.11
H:(3.51,6.41] 0.00 0.71 0.89

Table 2
Conditional probability table for chlorophyll a node in the BN discretized using equal
quantile method. Each number represents the probability of chlorophyll a taking any
of its discrete states, low (L), medium (M), and high (H), given the states of nitrogen
and phosphorus. For example, the first number in the upper right of the table, 0.18, is
the probability of chlorophyll a concentrations between �2.3 and 1.72 mg/L given
that nitrogen concentrations are between 3.43 and 5.99 and phosphorus concen-
trations are between 3.3 and 7.24.

Nitrogen L: [4.5,5.99]
Phosphorus L: [0,2.64] M: (2.64,3.3] H: (3.3,7.24]

Chlorophyll a L: [�2.3,1.72] 0.80 0.37 0.18
M: (1.72,2.64] 0.20 0.57 0.57
H: (2.64,6.41] 0.00 0.05 0.24

Nitrogen M: (5.99,6.41]
Phosphorus L: [0,2.64] M: (2.64,3.3] H: (3.3,7.24]

Chlorophyll a L: [�2.3,1.72] 0.60 0.12 0.04
M: (1.72,2.64] 0.39 0.67 0.38
H: (2.64,6.41] 0.02 0.21 0.58

Nitrogen H: (6.41,8.46]
Phosphorus L: [0,2.64] M: (2.64,3.3] H: (3.3,7.24]

Chlorophyll a L: [�2.3,1.72] 0.54 0.09 0.01
M: (1.72,2.64] 0.43 0.64 0.12
H: (2.64,6.41] 0.03 0.27 0.86

Fig. 3. The figure depicts original data for chlorophyll a concentrations from �2.302 to 6.411 discretized using the equal interval, equal quantile, and moment matching methods
into three, four, and five intervals. The underlined numbers show the break points and the percentages show the frequency of observation in each interval.
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underlying relations among variables (Fig. 4). Further, the differing
CPTs are the result of discertization methods and inconsistent
definitions of “low”, “medium”, and “high” categories. We used
multiple measures of performance to compare predictions for the
testing data; no one discretization method outperformed the
others consistently. Comparisons using SSE, model accuracy, and
AUC as criteria offer no conclusive guidance that one method or
number of break points consistently outperforms the others (see



Table 3
Conditional probability table for chlorophyll a node in the BN discretized using
moment matching method. Each number represents the probability of chlorophyll a
taking any of its discrete states, low (L), medium (M), and high (H), given the states
of nitrogen and phosphorus. For example, the first number in the upper right of the
table, 0.43, is the probability of chlorophyll a concentrations between �2.3 and
1.91mg/L given that nitrogen concentrations are between 4.5 and 6.12 and phos-
phorus concentrations are between 3.97 and 7.24.

Nitrogen L: [4.5,6.12]
Phosphorus L: [0,2.77] M: (2.77,3.97] H: (3.97,7.24]

Chlorophyll a L: [�2.3,1.91] 0.85 0.39 0.43
M: (1.91,3.39] 0.15 0.60 0.36
H: (3.39,6.41] 0.00 0.01 0.21

Nitrogen M: (6.12,7.02]
Phosphorus L: [0,2.77] M: (2.77,3.97] H: (3.97,7.24]

Chlorophyll a L: [�2.3,1.91] 0.66 0.09 0.01
M:(1.91,3.39] 0.34 0.76 0.38
H: (3.39,6.41] 0.00 0.15 0.61

Nitrogen H: (7.02,8.46]
Phosphorus L: [0,2.77] M: (2.77,3.97] H: (3.97,7.24]

Chlorophyll a L:[�2.3,1.91] 0.76 0.09 0.02
M:(1.91,3.39] 0.24 0.57 0.12
H:(3.39,6.41] 0.00 0.34 0.86

Table 4
Confusion matrix for chlorophyll a in BN discretized using equal interval method
and 3-interval. Each element of the matrix is the number of cases for which the
actual interval is the row and the predicted interval is the column. The discrete states
are low (L), medium (M), and high (H).

Equal Interval Predicted
L: [�2.3,0.603] M: (0.603,3.51] H: (3.51,6.41]

Observed L: [�2.3,0.603] 0 65 0
M: (0.603,3.51] 0 1637 17
H: (3.51,6.41] 0 165 59

Equal Quantile Predicted
L: [�2.3,1.72] M: (1.72,2.64] H: (2.64,6.41]

Observed L: [�2.3,1.72] 533 105 6
M: (1.72,2.64] 180 389 107
H: (2.64,6.41] 11 121 491

Moment Matching Predicted
L: [�2.3,2.56] M: (2.56,3.37] H: (3.37,6.41]

Observed L: [�2.3,1.91] 642 155 1
M: (1.91,3.39] 154 657 71
H: (3.39,6.41] 2 90 171
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Marcot et al. (2006) and Subsection 2.3); generally, the differences
are small. The results are summarized in Table 5. Because the data
set is large (n ¼ 19,248), the model is simple, the relationships
among the variables are fairly straightforward, and each model has
been optimally fitted, goodness-of-fit measures may not be a good
basis to differentiate models (Qian and Cuffney, 2012). However,
the models differ significantly in the resulting relations and CPTs as
well as their management implications.
3.4. Management applications

BNs are tools for managers and policy makers to evaluate the
impact of their pending decisions/policies on an ecosystem prior to
implementation. Consider a case where the policy makers are
assessing the impact of lowering phosphorus on Chl a
concentrations.

Summarized results of low phosphorus on Chl a, discretized
using different methods, point to very different conclusions
(Table 6). The BN discretized using the equal interval method does
not conclude that lowering phosphorus is effective in lowering Chla
a, while the BN discretized using the equal quantile approach finds
that lowering phosphorus would result in low Chl a concentrations
66% of the time. As another case consider managers targeting
policies that would result in low/medium Chl a concentrations
(avoid high Chl a concentrations). While the BNs discretized with
equal quantile and moment matching methods recommend low to
medium phosphorus and nitrogen concentrations, the BN dis-
cretized using equal interval recommends medium nitrogen and
phosphorus concentrations (see Table 7 for a summary of results).

4. Discussion

Our goal in this paper was to investigate whether alternative
discretization methods affect the conclusions reached using the
resultant BNs. Discrepancies among the BNs are expected, as each
method results in a different categorization of the predictor and
response variables. However, the differences can be masked by
commonly used category names such as “low”, “medium”, and
“high”. Consequently, two BNs developed based on different dis-
cretizing methods may have the same structure but the meaning of
the categories, as well as the meaning of conditional probabilities,
will differ. Likewise, the predictions and decisions made based on
the BNs developed using different discretizing methods are ex-
pected to differ because they are models with different meanings.
We illustrated the differences by comparing nine BNs developed
using three commonly used discretizing method and three
commonly used number of break points in this study. The resulting
CPTs changed from one method of discretization to the other. The
CPTs provide the basis and define the relations in a BN; conse-
quently, any calculation based on them would be different. The
predictions were different among methods. Management recom-
mendations were also different among the developed BNs
(subsection 3.4). Hence, we call for a careful consideration of the
underlying model and recognizing the limit of the BN imposed by
the currently available software. BN models developed using
different discretization methods should be considered and
compared. If the results of such models are different, the choice of
one method over the other should be justifiable. An alternative
approach would be developing continuous BN models using Mar-
kov Chain Monte Carlo.

The example we used has a simple structure and we can easily
understand the differences among the discretization methods - the
differences are a result of different definitions of the categories. As
discretization represents a simplification of the underlying func-
tional relations, the optimal discretizing method is the one that can
preserve the underlying functional relations. When the underlying
relations are unknown, we expect that the optimal method is also
unknown. In our example, we did not find a consistently best dis-
cretization method using three commonly used model comparison
criteria. The equal interval method performs relatively well on all
comparison criteria (Table 5); however, it does that by classifying
most of the new data into “medium” category where most of the
data lie (Table 4). Hence, other model performance criteria such as
balanced accuracy and class-specific recall might be better mea-
sures of model goodness.

The deliberately simple structure, which includes only three
variables, and is supported by a large data set, also indicates that
the problems we have documented do not arise principally because
many of the conditional probability intervals are data-sparse. As the
number of variables and intervals increase in a BN, the size of the
data set required to develop the BN also increases. Thus, we would
expect more pronounced discrepancies among more complex
models developed from limited data.

When results from a BN model are communicated with a



Fig. 4. The histogram shows the test data in continuous form. The overlaid cross-hatched histogram shows the model predictions for the test data in discrete form using the BNs
developed by data discretized using equal interval (a), equal quantile (b), and the Moment Matching (c) methods, respectively. Comparison of continuous histogram with the
predicted discretized shows the discrepancy between the observed and predicted in the test data. Comparison of histograms across the row shows the discrepancy between
predictions due to method of discretization.

Table 5
Comparison of predictive accuracy among different discretization methods using
SSE, Accuracy, and AUC as criteria with 3 intervals and 5 intervals.

SSE Accuracy AUC

3 Intervals
Equal Interval 1818.545 0.871 0.844
Equal Quantile 3681.574 0.728 0.824
Moment Matching 3228.382 0.751 0.807
4 Intervals
Equal Interval 1962.192 0.700 0.803
Equal Quantile 2852.654 0.624 0.772
Moment Matching 2480.924 0.621 0.765
5 Intervals
Equal Interval 1325.392 0.698 0.902
Equal Quantile 2141.934 0.549 0.725
Moment Matching 818.166 0.702 0.843

Table 6
Probability Table for Chlorophyll a under low phosphorus scenario for models dis-
cretized using three different methods.

Chlorophyll a

Method Low Medium High

Equal Interval 0.07 0.93 0.00
Equal Quantile 0.66 0.32 0.02
Moment Matching 0.73 0.26 0.01

Table 7
Probability Table for phosphorus and nitrogen under a scenario where chlorophyll a
concentrations do not exceed medium.

Phosphorus Nitrogen

Method Low Medium High Low Medium High

Equal Interval 0.27 0.72 0.01 0.19 0.79 0.02
Equal Quantile 0.46 0.36 0.18 0.41 0.33 0.26
Moment Matching 0.44 0.49 0.07 0.48 0.48 0.04
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manager, the underlying definition of categories can be overlooked.
What is considered “high”, for example, depends on experience and
an understanding of the system in question. High nutrient con-
centrations for one group of managers could be “medium” to
another group. Examples of such differences can be found in a
study by Kashuba et al. (2010), where 11% urbanization in a
watershed is low in Southeast US but very high in state of Maine in
north east US. As a result, we consider the discrepancy in the
management recommendations as a major weakness of BNs based
on discretized variables. Further, frequently used discretization
methods embedded in BN software (e.g. equal interval and equal
quantile) do not discretize data into intervals that are necessarily of
interest to managers. For example, managers might be interested in
predicting Chl a concentrations higher than a relevant water quality
standard (e.g., 40 mg/L in many states in the US), but the default
discretization methods in BN software might not lead to a break
point at the value of interest. As discussed in the results, the BN
discretized using equal interval did not find the lowering phos-
phorus as effective as did the BN models based on the other two
discretization methods. If the BN discretized with equal intervals
was used to provide recommendations, then lowering phosphorus
would be considered not cost-effective, whereas, this is only the
result of discretization. We would caution against decisions based
on models for which the outputs vary by the choice (of dis-
cretization method) that does not have justifiable scientific basis.

5. Conclusions

BNs are effective, valuable tools to quantify uncertainty in
environmental modeling.We highlighted themain drawback of the
BNs (discretization of continuous variables) and argued that dis-
cretization of continuous variables should be avoided, if possible.
However, most currently available BN software requires dis-
cretization. Hence, when discretization is necessary, its conse-
quences should be carefully evaluated. The results of different
discretization schemes should be compared and used to learn more



F. Nojavan A. et al. / Environmental Modelling & Software 87 (2017) 64e71 71
about the system under study. Future work should focus on
developing BNs software that can accommodate continuous vari-
ables with flexible functional forms, for example, by using the Gibbs
Sampler as was done in Qian and Miltner (2015).
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