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A 1-dimensional (vertical), linked hydrodynamic and eutrophication model that was previously calibrated and
corroborated with 19 years (1987–2005) of observations in the central basin of Lake Erie, was applied as part
of a group of models capable of forecasting ecosystem responses to altered phosphorus loads to Lake Erie. The
results were part of the effort guiding the setting of new phosphorus loading targets in accordance with the
Great Lakes Water Quality Agreement. Our analysis demonstrated that while reductions in total phosphorus
loads can be expected to reduce hypoxia and chlorophyll-a impairments on average, climate andmeteorological
variabilitywill result in significant year to year variability.Weprovide examples for achieving hypotheticalwater
quality goals and relate the required reductions to recent nutrient sources.
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Introduction

Lake Erie has a longhistory of cultural eutrophication (Beeton, 1963)
and efforts to mitigate the resulting water quality degradation through
nutrient load reductions. Annex 3 of the 1978Great LakesWater Quality
Agreement (GLWQA, 1978) enlisted a suite of eutrophicationmodels to
help define as a target a total phosphorus (TP) load of 11,000 metric
tonnes per year for Lake Erie, which initially resulted in improvements
in water quality and beneficial uses (DePinto et al., 1986). However, in
recent decades, the lake has experienced a return to eutrophic condi-
tions, with central basin hypoxia (dissolved oxygen concentration
below 2 mg L−1) returning to substantial size and western basin harm-
ful algal blooms returning (Burns et al., 2005; Zhou et al., 2013; Scavia
et al., 2014). This re-eutrophication of Lake Erie seems to be a result of
changes in the structure and function of the lake ecosystem (Hecky
et al., 2004; Scavia et al., 2014) and of changes in the dominant source
of nutrient loads (agricultural non-point sources) and the form of
those loads (increase in fraction of bioavailable phosphorus).

The 2012 revision of the GLWQA (IJC, 2012) calls for revisiting the
target loads for theGreat Lakes, and a suite ofmodelswere used to assist
that effort (Scavia et al., 2016–in this issue). The goalwas to use existing,
scientifically credible models to investigate the influence of external
load reductions to Lake Erie. The models that are focused on Lake Erie
es Research. Published by Elsevier B
hypoxia ranged from simple regressions to complex 3-dimensional
ecosystem models. As part of that effort, we adapted a previously
corroborated 1-dimensional, linked hydrodynamic-eutrophication
model (Rucinski et al., 2014). While most of the other models in the
effort focused on a single meteorological year, we investigated the
effects of a wide range of meteorological conditions from 1987 to
2005, the period forwhich themodelwas previously calibrated and cor-
roborated. This allows us to not only investigate the role of the external
phosphorus loading, but also the uncertainty in the lake response as a
function of weather and associated mixing regimes.

To help guide setting new target loads, eutrophication response
indicators and their associated metrics were defined to describe the
ecosystem response to varying loading (Scavia et al., 2016–in this
issue). For the central basin of Lake Erie, the hypoxia metrics included
hypoxic area and duration, and the phytoplankton biomass metric
was chlorophyll-a concentration. Model derived load–response rela-
tionships for these metrics were developed to assess TP load reduction
would be required to achieve an ecologically acceptable threshold for
each metric.

Using the 1987–2005 observedmeteorological conditions to create a
set of thermal regimes as drivers of the ecological model, the model
produced forecast envelopes representing the mean response and
uncertainty associated with meteorological variation. This approach
allows us to generate central tendency response curves, and estimate
the deviation from that mean due to meteorological conditions. The
results indicate that, while one can estimate the projected impact of a
.V. All rights reserved.
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load reduction on average hypoxia, the actual ecological response can
deviate significantly in any given year based on the timing and magni-
tude of the stratification and associated vertical mixing in the lake.
Modeling approach

Model structure

A 1-dimensional hypoxia model representing the offshore waters
of the central basin (approximately 24 m depth) of Lake Erie was
previously developed, linking an external hydrodynamic model with a
simplified nutrient-phytoplankton-zooplankton-detritus (NPZD) eu-
trophication model. The hydrodynamic model, described in Rucinski
et al. (2010), provides temperature and associated vertical mixing
profiles on an hourly basis for 48 vertical layers (each 0.5 m thick). For
the purposes of the following analyses, it is important to note that
while interannual variation in stratification properties is highly variable
over the simulation period, the long-term trend is relatively flat (Fig. 1).
Temporal variation in the modeled thermal regimes is described in
detail in Rucinski et al. (2010).

The eutrophication portion of the model incorporates phosphorus
and carbon loading to thewestern and central basins, internal phospho-
rus cycling, carbon cycling (in the form of algal biomass and detritus),
algal growth and death, zooplankton grazing, oxygen consumption
and production processes, and sediment interactions (Fig. 2). The
mass balance equations for the model are documented in Rucinski
et al. (2014).While oxygen dynamicsmay also be influenced by benthic
filter feeders (e.g., zebra and quagga mussels; Woynarovich, 1961),
these drivers were not included in this framework.

The model has been corroborated with in-lake data for dissolved
oxygen (DO), total phosphorus (TP), dissolved reactive phosphorus
Fig. 1. Interannual variation in a) temperature gradient across the thermocline and b) depth of
lines.
(DRP) and chlorophyll a (chl-a) measurements over nineteen years
from 1987 to 2005 (Rucinski et al., 2014). Observations used in the cor-
roboration were from EPA's online database (GLENDA), EPA's Great
Lakes National Program Office (GLNPO), Environment Canada's Water
Science & Technology Branch (ECWSTB), and the International Field
Years on Lake Erie Program (IFYLE, 2006). Model output was used to re-
late inputs (TP loading in this case) to outputs (DO and chl-a metrics)
as described below, representing both the mean response to a given
load and variability caused by variation in meteorological drivers.

In a similar analysis, Rucinski et al. (2014) developed preliminary re-
sponse curves for several DO metrics (hypolimnion oxygen demand,
hypoxia days, hypoxic area, bottomDO) in relation to annual TP and dis-
solved reactive phosphorus (DRP) loads using the loading time-series
observed in 1997. The current effort adapted this approach, using the
baseline loading year of 2008 to be consistent with the other models
used in the Annex 4 ensemble (Scavia et al., 2016–in this issue).
Sediment oxygen demand

Rucinski et al. (2014) found that sediment oxygen demand (SOD)
was a substantial contributor to overall oxygen depletion. For example,
in model tests, it was found that even after removing all external phos-
phorus loads, a 67% reduction of SOD was still required to eliminate
hypoxia. Therefore it was necessary to estimate the SOD under different
future loading scenarios. Because SOD is dependent upon the settling
and subsequent decomposition of organic matter derived primarily
from settling phytoplankton production that is in turn driven by nutri-
ent loads, it is logical to assume that reduced loads would eventually
lead to reduced SOD. Rucinski et al. (2014) developed a relationship
for Lake Erie between steady state SOD and settled organic matter
based on Borsuk et al. (2001). That relationship was then extended
the thermocline. Mean August values shown as solid black lines, ±1 s.d. shown as dotted
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Fig. 2. Conceptual diagram of eutrophication portion of the 1D Central Basin Hypoxia Model.
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based onmodel simulations of the relationship between TP load and the
rate of organic matter sedimentation, thus allowing estimates of SOD
corresponding to projected changes in phosphorus loads. Assuming
SOD is in steady state with nutrient loading, the resulting equationwas:

SOD ¼ SODmax � TPload
KSOD þ TPload

� �

Where:

SODmax maximum sediment oxygen demand (m−2 d−1),
TPload annual total phosphorus load (tonnes year−1),
KSOD half-saturation constant (tonnes year−1).

The values for SODmax and KSOD, obtained by regression, are
0.98 g O2 m−2 d−1 and 3847 tonnes year−1, respectively.

Model application

Loading scenarios

The corroboratedmodel (Rucinski et al., 2014) used detailed daily TP
and DRP loads to the western and central basins for 1987–2005 (Dolan
andMcGunagle, 2005; Richards and Baker, 2002; Richards, 2006). To es-
timate the load to the central basin from thewestern basin, an apparent
loss rate of 10 m year−1 (Lesht et al., 1991) was applied to the western
basin loads to account for nutrient uptake and sedimentation.

Similarly, daily TP and DRP loadings for the major tributaries were
available for several more recent years from Dave Dolan (reported in
Scavia et al., 2014). The 2008 loading time-series was used as the com-
mon input set in themultiplemodel effort because the total annual load
from this year (10,800 MT) was similar to the current GLWQA target
load (11,000 MT). To assess the response to different nutrient loads,
global scalars of 0%, 25%, 50%, 75%, 100%, and 125% relative to the
2008 loading time-series for each scenario were applied to all western
and central basin sources.

Ecological indicators and response relationships

To evaluate responses to varying TP loads, we focused on two key
central basin characteristics: bottom water hypoxia and summer
algal blooms. Three metrics were related to bottom water hypoxia:
average August–September hypoxic area, average August–September
hypolimnetic DO concentration, and the number of hypoxic days
calculated for the entire stratified period. To address the relationship
between loads and algal blooms, June–August average chlorophyll-a
concentration was used as a surrogate for algal biomass.

Because the model is a 1-d representation of the deepest part of the
central basin, we used a previously established (Zhou et al., 2013)
relationship between bottom-layer DO concentration and hypoxic
area in Lake Erie:

A ¼ 9:3 � e −DO2
7:09

� �

Where:

A hypoxic area (103 km2),
DO hypolimnetic dissolved oxygen (mg L−1).

Rucinski et al. (2014) applied this equation to corroborated model
output and demonstrated that themodeled hypoxic areawas consistent
with observed areas for awide range ofmeteorological and loading con-
ditions. It should be noted that the dataset that was used by Zhou et al.
(2013) is based on data from 1987 to 2007, while this effort focuses on a
loading time-series representing 2008. However, the total annual load
in 2008 (10,800 MT) is within the range of observed loads from 1987
to 2007.

Results and discussion

The response of summer averaged chl-a (June–August) to changes
in annual TP load to the western and central basins (Fig. 3) saturates
at around 2 μg L−1 (chl-a), with a more linear response at lower loads.
The variability due to meteorology is quite small (shown as ±1 s.d.
error bars) indicating that variation in net algal growth is influenced
more by loads than by variation in climate.

The load–response curve for hypoxic area (Fig. 4) for the range of
loads tested is the lower end of a saturating function. The similar
curve developed by Rucinski et al. (2014) approached an asymptote at
loads near 20,000 MT, most likely related to physical constraints of the
basin. The one standard deviation error bars illustrate the range of
hypoxic areas one can expect from variability in the thermal regime
that results from varying inter-annual meteorological drivers.

Similar to the load–response curve for hypoxic area, the number of
hypoxic days increases with annual TP load (Fig. 5). Note that the num-
ber of hypoxic days is calculated for the entire duration of stratification,
which varies in each of the 19 thermal regimes, but typically lasts from
mid-May to early-October.

Image of Fig. 2


Fig. 3. June–August epilimnion average chlorophyll-a load–response curve. Mean of
1987–2005 model estimates values shown as diamonds. Standard deviation of 1987–
2005 values shown as vertical error bars.

Fig. 5.Number of hypoxic days load–response curve.Mean of 1987–2005model estimates
values shown as diamonds. Standard deviation of 1987–2005 values shown as vertical
error bars.
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As expected, summer average (August–September) hypolimnetic
DO concentration declines with increasing annual TP phosphorus load
(Fig. 6), with significant inter-annual variability driven by meteorology.
However, the pattern of seasonal evolution of hypoxia (Fig. 7) appears
consistent among the 19 thermal regimes with onset ranging between
mid-July and mid-August.

Uncertainty and sensitivity analysis

Meteorological effects

A number of additional simulations were run to assess the relative
importance of factors contributing to development of hypoxia. First,
we simulated all combinations of the 19 loading rates and 19 thermal
stratification patterns from 1987 to 2005. That is, the daily loading
time-series from each year (1987–2005) was applied to each of the 19
meteorological conditions. Using a two-way Analysis of Variance
(ANOVA) without replication showed that variation in meteorology
(via thermal stratification) explained 8.9 times as much annual varia-
tion in the hypoxic area compared to variation in loading. This suggests
Fig. 4. Aug–Sept average hypoxic area load–response curve. Mean of 1987–2005 model
estimates values shown as diamonds. Standard deviation of 1987–2005 values shown as
vertical error bars.
that the average hypoxic response in the central basin of Lake Erie is
relatively predictable for the range of loads observed in the study
period, but meteorological forcing functions will cause significant year
to year deviations.

In addition to assessing the impact of load magnitude compared to
thermal structure, a separate 19 × 19 matrix of scenarios was created
to investigate the impact of load seasonality. For these scenarios, the
same magnitude of annual phosphorus load (equal to the 2008 load)
was applied in each year; however, the timing of the inputs was
adjusting to match that of each of the daily load time-series from 1987
to 2005. A twoway ANOVA (without replication) showed that variation
in the thermal structure of the lake explained 14.2 times as much
variation in hypoxic area compared to the timing, or seasonality, of
the load. This analysis suggests that, for the range of load seasonality ob-
served from 1987 to 2005, the hypoxic response is far more dependent
on stratification structure than on the time of nutrient delivery to the
system. A similar analysis was performed in Rucinski et al. (2014)
which found that the thermal regime explained 5 times as much varia-
tion in hypoxia as the load timing did. However, that analysis used a
higher baseline loading magnitude (equal to the 1997 load) which
Fig. 6. Aug–Sept average bottom water dissolved oxygen load–response curve. Mean of
1987–2005 model estimates values shown as diamonds. Standard deviation of 1987–
2005 values shown as vertical error bars.
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Fig. 7. Temporal evolution of hypoxic extent. Mean of 1987–2005model estimates values
shown as solid line. Standard deviation of 1987–2005 values shown as shaded area.

Fig. 9. Comparison the hypoxic area load–response curves obtained from original model
configuration (solid), and using loads from WLEEM (dashed).
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resulted in more hypoxia. The greater magnitude of estimated hypoxia
likely limited the influence of seasonal variation in the previous study.
In both analyses, the thermal regime was found to explain much more
of the variation in annual hypoxia than seasonality.

Further, comparing the annual hypoxic response to average depth to
the hypolimnion (Fig. 8) illustrates the influence of the thickness of the
hypolimnion. It is clear that inter-annual variability in the meteorologi-
cal drivers of the lake thermal regime has a strong influence on hypoxic
response, and thus captures most of the uncertainty for a given load.
This underscores the notion that while scenarios representing the aver-
age response of the lake to alterations in nutrient loads can be useful
guidance for policy, forecasts for any particular year will be dependent
on the lake thermal regime.

Western basin load effects

The original configuration of themodel accounted for attenuation of
the western basin loads using a net apparent TP deposition rate of
10 m year−1 (Lesht et al., 1991). For comparison, here we also used
nutrient and organic carbon loads entering the central basin from the
western basin as calculated by the Western Lake Erie Ecosystem
Model (WLEEM) (Verhamme et al., 2016–in this issue). WLEEM pro-
vides daily aggregates of the mass flux crossing the western-central
basin boundary. The WLEEM-linked version of the model produced a
somewhat greater magnitude of hypoxia for a given total load (Fig. 9),
indicating that the load from the western basin is likely greater than
Fig. 8. Comparison of September–August hypoxic area response and average depth to the
hypolimnion.
the load calculated with a 10 m year−1 net apparent TP loss rate for
the Western Basin, especially at higher loading rates.

It is important to note that both versions of ourmodel used the same
parameter set as the original version of the model that attenuated the
western basin loads at a constant rate. Therefore, it is expected that
the differences in loads entering from thewestern basin would produce
a difference in response, as the calibration parameters could be expect-
ed to change with different western basin trapping efficiencies. Howev-
er, themodel versions also differ in how theflow is transported from the
western to central basin. WLEEM incorporates a full 3-dimensional
hydrodynamic model, which allows for short term circulation and
retention in thewestern basin. The original version of ourmodel simply
assumed that the sum of the flow from the western basin tributaries
entered the central basin, following the observed hydrograph (after
accounting for the constant loss). Therefore, differences in simulated
responses between the two model versions are not only a result of the
calibration parameters, but also due to different flow hydrographs in
the load inputs.

Load sources

Reaching a load reduction that can, on average, achieve desired im-
provements in ecosystem health will likely require significant targeted
land usemanagement practices and potentially improvements at indus-
trial and municipal treatment plants. The distribution of the TP load
from major tributaries to the western basin over several recent years
Fig. 10. Annual comparison of TP load frommajor tributaries to western basin of Lake Erie
(Maumee River: black, Detroit River: dark gray, other tributaries: light gray).
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Fig. 11. Annual comparison of flow-weighted mean TP concentration from major
tributaries to western basin of Lake Erie (Maumee River: black, Detroit River: dark gray,
other tributaries: light gray).
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(Dolan, personal communication; IJC, 2014) demonstrates that the con-
tribution from theMaumee and Detroit Rivers make up the vast major-
ity of the total western basin load (Fig. 10). However, river discharge
dictateswhich is thedominant load in a given year because theMaumee
River loadhas large inter-annual variability driven by changes in precip-
itation and river flowwhile the Detroit River load is relatively constant.
Given that this modeling application treats the loads from the western
basin as a combined source, reducing the load from either the Detroit
or Maumee would produce a similar model response on average. How-
ever, the flow from the Detroit River is an order of magnitude greater
than that of theMaumee, and therefore its flow-weighted TP concentra-
tion is much lower (Fig. 11), suggesting reductions from the Maumee
basin might provide the most efficient approach.

Conclusions

A 1-dimensional coupled hydrodynamic-eutrophication for the
central basin of Lake Erie model has been previously calibrated and
corroborated to in-lake data over a 19 year (1987–2005) period, during
which meteorological conditions vary significantly. Applying the
calibrated model to the 2008 loading time-series and simulating the
response under the 19 different thermal regimes produces an envelope
of expected lake response for a given TP load. Scaling the 2008 loading
time-series generates response curves (Figs. 3–6) that can help guide
management decisions on target load reductions. For example, if man-
agers wished to reduce the hypoxic area in the central basin to approx-
imately 2000 km2, a total maximum western and central basin TP load
of approximately 4800 MT would be required, representing approxi-
mately 48% reduction from the baseline 2008 loads. The load from the
two dominant tributaries (Detroit and Maumee Rivers) are approxi-
mately equal (Fig. 10), and therefore the required reduction should be
focused on these sources. However, because the nutrient concentration
in the agriculturally dominated Maumee basin are far greater, it sug-
gests management practices in the Maumee River basin would provide
the greatest benefit to reducing hypoxia in Lake Erie.

While the 48% reduction used in the illustrative example above
would result in an average expected hypoxic area of 2000 km2, variation
in meteorology will also determine the level of hypoxia in any given
year, as illustrated by the error bars in the response curves (Figs. 3–6),
variance statistics, and relationship to hypolimnion thickness (Fig. 8).
In addition, a warming climate is expected in the Great Lakes region in
the future (Karl et al., 2009; Hayhoe et al., 2010), and this will likely
lead to early and more prolonged stratification. Future climate change
may lead to lowerwater levels aswell (Angel andKunkel, 2010) causing
a thinner hypolimnion and producing greater than average hypoxia for
a given load (Fig. 8). These changes in the region may result in
unexpected ecosystem responses, and therefore require a systematic
adaptive management approach for Lake Erie load management.
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