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• Different monitoring approaches are
used to detect cyanobacteria blooms in
lakes.

• We assessed the coherence of different
monitoring methods in capturing
bloom dynamics.

• Wemodeled relationships between envi-
ronmental drivers and bloom variability.

• Discrepancies acrossmonitoringmethods
may influence modeled relationships.

• Integrating multiple survey methods is
key to improve bloom detection and
modeling.
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Cyanobacteria blooms are a major environmental issue worldwide. Our understanding of the biophysical pro-
cesses driving cyanobacterial proliferation and the ability to develop predictive models that inform resource
managers and policy makers rely upon the accurate characterization of bloom dynamics. Models quantifying re-
lationships between bloom severity and environmental drivers are often calibrated to an individual set of bloom
observations, and few studies have assessed whether differences among observing platforms could lead to con-
trasting results in terms of relevant bloom predictors and their estimated influence on bloom severity. The aim of
this study was to assess the degree of coherence of different monitoring methods in (1) capturing short- and
long-term cyanobacteria bloom dynamics and (2) identifying environmental drivers associated with bloom var-
iability. Using western Lake Erie as a case study, we applied boosted regression tree (BRT) models to long-term
time series of cyanobacteria bloom estimates from multiple in-situ and remote sensing approaches to quantify
the relative influence of physico-chemical andmeteorological drivers on bloom variability. Results of BRTmodels
showed remarkable consistency with known ecological requirements of cyanobacteria (e.g., nutrient loading,
water temperature, and tributary discharge). However, discrepancies in inter-annual and intra-seasonal bloom
dynamics across monitoring approaches led to some inconsistencies in the relative importance, shape, and
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sign of the modeled relationships between select environmental drivers and bloom severity. This was especially
true for variables characterized by high short-term variability, such as wind forcing. These discrepancies might
have implications for our understanding of the role of different environmental drivers in regulating bloom dy-
namics, and subsequently for the development of models capable of informing management and decision mak-
ing. Our results highlight the need to develop methods to integrate multiple data sources to better characterize
bloom spatio-temporal variability and improve our ability to understand and predict cyanobacteria blooms.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

There has been a global increase in cyanobacteria dominance and as-
sociated harmful algal blooms (CyanoHABs or CHABs) in aquatic sys-
tems over the past two centuries (Paerl and Paul, 2012; Taranu et al.,
2015), posing serious threats to the functioning of these ecosystems
and to the health of organisms that rely on them, including humans
(Codd et al., 2005a; Smith, 2003). CHAB impacts include marked de-
creases in water transparency, thus promoting the suppression of
other primary producers and potentially triggering cascading effects
across higher trophic levels, and increases in the extent of hypoxic/an-
oxic conditions due to algal biomass decomposition (Havens, 2008).
The production of toxins by several cyanobacteria taxa also causes se-
vere impairment of freshwater resources, and cases of intoxication of
animals and humans due to consumption of contaminated water have
been reported in several regions of the world (Carmichael and Boyer,
2016; Chorus and Bartram, 1999; Codd et al., 2005b). These public
health risks and decreases in water quality may ultimately also have
strong negative economic repercussions on local fisheries, tourism,
and recreation industries (Dodds et al., 2009).

Increased anthropogenic nutrient inputs have been identified as a
major factor promoting CHABs (Downing et al., 2001; Paerl and Otten,
2013a). Additional drivers thought to enhance cyanobacteria growth in-
clude increased water temperatures (Kosten et al., 2012; Paerl and
Huisman, 2008), changes in the frequency and timing of extreme
weather events (Michalak et al., 2013; Paerl and Huisman, 2009), alter-
ations in hydrologic regime and water residence time (Elliott, 2010),
changes in nutrient stoichiometric ratios (Anderson et al., 2002; Baker
et al., 2014), and introduction of invasive species (Vanderploeg et al.,
2001).

Despite the vast amount of knowledge developed in the past de-
cades on the ecology of cyanobacteria, quantifying the relative influence
and interactions of different environmental drivers in regulating bloom
dynamics remains a significant challenge (Perovich et al., 2008). This
difficulty is due partly to limitations in accuracy and spatio-temporal
coverage of monitoring methods typically used to estimate bloom in-
tensity and to model relationships with environmental variables
(Bullerjahn et al., 2016; Dale and Murphy, 2014; Ho and Michalak,
2015). CHAB occurrence is commonly tracked via in-situ sampling or re-
mote sensing (Bullerjahn et al., 2016; Srivastava et al., 2013). Spatio-
temporal coverage of in-situ surveys is typically limited by the costs
and feasibility of maintaining long-termmonitoring programs with ad-
equate numbers of stations and sampling frequency. On the other hand,
satellite imagery may incur severe spatio-temporal limitations due to
cloud cover, and remote sensing-derived estimates of bloom size may
be affected by significant biases due to complexwater optical properties
and specific saturation constraints of different sensors and retrieval al-
gorithms (Park et al., 2010; Reinart and Kutser, 2006; Shen et al.,
2012; Wynne et al., 2013). Extremely dense surface bloom accumula-
tions (surface scums; Fig. S3) may result in satellite underestimation
due to signal saturation (Kutser et al., 2006). Furthermore, wind-in-
duced water column mixing can prevent the bloom from rising to the
surface, resulting in potential underestimation of bloom intensity from
satellite (Wynne et al., 2010).

As a result of these limitations, discrepancies in the characterization
of seasonal and inter-annual bloom dynamics often emerge when
analyzing time series of CHAB observations from different monitoring
approaches, potentially leading to different conclusions on the main
drivers of cyanobacteria bloom development and persistence (Ho and
Michalak, 2015). These differences highlight the need to explore the
challenges associated with comparing and integrating different CHAB
monitoring products to improve our understanding of the uncertainties
associated with current bloom tracking and modeling efforts, especially
in the light of the increasing need for reliable, science-based recommen-
dations to managers. In this perspective, the integration of bloommea-
surements from multiple types of monitoring approaches into CHAB
modeling efforts has recently been recognized as a key research area
to advance our predictive knowledge of CHAB dynamics (Bullerjahn et
al., 2016).

The main aim of this work is to assess the degree of coherence of
multiple data sources in capturing short- and long-termCHABdynamics
and in identifying key environmental drivers associated with the ob-
served variability in bloom intensity. To this end, we compiled multiple
long-term (2002−2013), high-frequency (daily to bi-weekly) datasets
of bloom estimates in the western basin of Lake Erie, a Laurentian Great
Lake. The Great Lakes are a vital natural resource, containing roughly
20% of the world's surface freshwater. Specifically, Lake Erie provides
drinkingwater to over 11million people and supports one of the largest
freshwater commercial fisheries worldwide. In the 1960s and 70s, Lake
Erie experienced intense eutrophication, with large cyanobacterial
blooms in the shallow western basin and beyond (Scavia et al., 2014).
The Great Lakes Water Quality Agreement (GLWQA) set target loads
for total phosphorus (TP) in 1978. Widespread phosphorus load reduc-
tions, primarily from point sources, were implemented following this
Agreement (Dolan, 1993), and water quality improvements were ob-
served in the 1980s and 90s (DePinto et al., 1986; Makarewicz and
Bertram, 1991). However, these trends appear to have reversed since
the mid-1990s (Scavia et al., 2014; Watson et al., 2016), with
cyanobacteria blooms composed mainly of Microcystis spp. increasing
in frequency and intensity in the lake's western basin (Bridgeman et
al., 2013; Obenour et al., 2014; Stumpf et al., 2012) and causing serious
ecological and public health risks.

The specific objectives of this work are (1) to compare the intra-sea-
sonal and inter-annual relative variability inwestern Lake Erie CHAB es-
timates derived from different in-situ and remote sensing approaches
and (2) to assess the degree of coherence across monitoring products
in identifying environmental drivers and corresponding critical thresh-
olds associated with CHAB occurrence. We applied boosted regression
tree (BRT) analysis to each set of bloom estimates to analyze relation-
ships between bloom size and a suite of candidate physico-chemical
andmeteorological predictors.We comparedmodeling results to assess
whether different monitoring products lead to identifying different key
predictors and/or contrasting functional relationships among variables.
Finally, we compared the critical thresholds of environmental drivers
identified by the BRT models with results from previous CHAB studies
in western Lake Erie and, more generally, with known ecological re-
quirements of cyanobacteria.

2. Materials and methods

TheMaterials andmethods section is organized as follows.We begin
by describing the study site (Section 2.1), followed by a description of
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the CHAB monitoring products included in this study (Section 2.2). We
then provide an account of the environmental variables considered as
candidate CHAB predictors (Section 2.3), and we describe themodeling
analyses performed on each of the CHAB monitoring products (Section
2.4).

2.1. Study site

The western basin of Lake Erie (Fig. 1) has a surface area of approx-
imately 3000 km2. It is relatively shallow (mean depth 7.4 m) and well-
mixed, with a water residence time of about 51 days (Michalak et al.,
2013). The basin is influenced mainly by the Detroit River to the north
and the Maumee River to the south-west. While the Maumee River
flow is substantially lower than that of the Detroit River (5% and 90%
of the total flow discharged annually into thewestern basin, respective-
ly), the two rivers contribute a similar portion (45% each) of the annual
TP load delivered to the basin from both point and nonpoint sources
(IJC, 2014; Maccoux et al., 2016). The even load proportion is due to
the substantially higher TP concentrations typically found in the Mau-
mee River,whichdrains oneof themost heavily agriculturalwatersheds
in the Great Lakes region (Richards and Baker, 2002; Richards et al.,
2008; Scavia et al., 2016). Compared to theMaumee, Detroit River nutri-
ent concentrations are generally too low to significantly contribute to
CHAB formation (IJC, 2014; Scavia et al., 2016). Summer cyanobacteria
blooms typically originate and peak in the area directly affected by the
Maumee River plume and tend to move eastward later in the season
(Wynne and Stumpf, 2015). Recent studies have shown a positive rela-
tionship between peak summer CHAB size in the western basin and
Maumee River spring phosphorus load (Bertani et al., 2016; Michalak
Fig. 1. Map of the western basin of Lake Erie with in-situ sampling locations shown. EPA GLN
University of Toledo Lake Erie Center; NOAA GLERL: National Oceanic and Atmospheric Admin
et al., 2013; Obenour et al., 2014; Stumpf et al., 2012), though seasonal
phosphorus load alonemay not entirely explain the substantial increase
in bloom size observed over the last decade (Obenour et al., 2014). Al-
though several different cyanobacteria taxa can be found in western
Lake Erie, Microcystis has generally dominated the blooms in recent
years (Bridgeman et al., 2012; Brittain et al., 2000; Chaffin et al., 2013).

2.2. CHAB monitoring products in Lake Erie

We compiled eight in-situ and remote sensing monitoring products,
seven of which provide multiple observations of CHAB size over the
course of the CHAB season (Jun–Oct) during 2002–2013. For each sam-
pling date in each dataset we expressed bloom size as total metric tons
of chlorophyll-a (MT Chl-a) over the sampled area, following previously
published protocols to calculate bloom size wherever possible (e.g.,
Stumpf et al., 2012; Bridgeman et al., 2013) and/or applying appropriate
conversions as described below and in the Supplementary materials.
Comparing absolute bloom sizes derived from different monitoring
products is complicated by considerable differences in the location
and extent of the sampled areas, efficiencies of sampling methods and
analytical techniques, and accuracy of the applied conversion factors.
As a result, we limit our analysis to assessing the degree of coherence
among monitoring products in capturing intra-seasonal and inter-an-
nual variability in relative rather than absolute bloom size.

2.2.1. UT LEC in-situ sampling (2002–2013)
The University of Toledo Lake Erie Center (UT LEC) collected

Microcystis samples at six sites from an area of approximately 340 km2

in the vicinity of Maumee Bay (Fig. 1) in the years 2002–2013
PO: US Environmental Protection Agency's Great Lakes National Program Office; UT LEC:
istration's Great Lakes Environmental Research Laboratory.
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(Bridgeman et al., 2013). Surveys were carried out approximately bi-
weekly from May through October and samples were collected with
vertical plankton tows over the entire water column. Microcystis
biovolume (mL/m2) was determined as reported in Bridgeman et al.
(2013). In our analysis, total biovolume was converted to cell dry
weight using a relationship specifically derived for Microcystis in west-
ern Lake Erie (see Fig. 2 in Bridgeman et al., 2013). We then converted
cell dry weight to chlorophyll-a using the average chlorophyll content
of Microcystis cells measured in western Lake Erie (0.006125 g/g dry
wt; Chaffin et al., 2012). This value is consistent with measurements
of chlorophyll per unit biomass in Lake Erie in 2014 (T. Johengen, pers.
comm.) andwith averageMicrocystis cell chlorophyll contents reported
in the literature (Chen et al., 2011; Long et al., 2001;Wang et al., 2007).
To obtain an estimate of total bloommass for the sampling area in each
sampling date, we averaged the values of MT Chl-a/m2 across the sam-
pling sites, following the approach established in Bridgeman et al.
(2013), and multiplied the average by the extent of the sampled area
(340 km2).

2.2.2. NOAA-GLERL in-situ sampling (2008–2013)
The National Oceanic and Atmospheric Administration's Great Lakes

Environmental Research Laboratory (NOAA-GLERL, hereafter abbreviat-
ed as GLERL) has been monitoring water quality at several sites in the
western basin of Lake Erie since 2008. While surveys were carried out
monthly in 2008 at 13 sites across a broad portion of the basin, in
2009–2011 nine master stations from an area of approximately 300
km2 near the Maumee River inflow (Fig. 1) were sampled weekly to bi-
weekly from June through September–October of each year. In August–
September of 2011, when the bloom moved far beyond the Maumee
Bay, samples were collected at stations closer to the central portion of
the basin, where the bloomwas located. In these cases, we only consid-
ered sample sites located within the area covered by the GLERL master
Fig. 2. Annual bloom severity, calculated as the peak 30-daymoving average across each year, fo
axis for ease of interpretation. SeaWiFS estimates for the year 2009 are omitted due to sensorma
NOAA's National Centers for Coastal Ocean Science; MTRI MO SSI: Michigan Tech Research Inst
Total (chlorophyll-a + surface scum); MTRI SW SSI: Michigan Tech Research Institute SeaW
(chlorophyll-a + surface scum); UT LEC: University of Toledo Lake Erie Center; GLERL: Great L
stations or those located outside of that area but which did not extend
beyond the region sampled by Bridgeman et al. (2013), so that the
size of the total sampled area remained roughly 300 km2 in all years
(Fig. 1). In 2012–2013, four out of the nine master stations were sam-
pled from approximately the same 300 km2 area. Chlorophyll-a concen-
trations were measured from samples collected with a 1-m Niskin
bottle lowered below the water surface. We multiplied chlorophyll
values by the depth of the station (from NOAA bathymetry map;
http://www.ngdc.noaa.gov/) and averaged them across stations for
each sampling date, in accordance with the averaging approach used
for the UT LEC data (Bridgeman et al., 2013). These averages were
then multiplied by an area of 300 km2 to get total MT chlorophyll for
the sampled area.

2.2.3. EPA GLNPO in-situ sampling (2002–2013)
Two cruises per year (April and August) have been carried out since

1983 by the EPA's Great Lakes National Program Office (GLNPO), sam-
pling six offshore stations in the western basin (Fig. 1, http://www3.
epa.gov/greatlakes/monitoring/). Due to the very limited seasonal sam-
pling frequency, we did not include this product in our modeling analy-
ses. However, chlorophyll concentrations measured during the August
cruise were used to obtain a measure of total MT chlorophyll, which
was compared to the inter-annual variability of the bloom estimates de-
rived from other data sources. Specifically, we used chlorophyll values
measured from samples collected with a Niskin bottle just below the
surface at the two EPA stations falling within the area sampled by the
other in-situ surveys (Fig. 1). Wemultiplied chlorophyll concentrations
by station depth, averaged across stations, and multiplied that average
by an area of 300 km2 to obtain estimates of total MT chlorophyll com-
parable to those provided by other in-situmonitoring products. EPA sys-
tematically measured chlorophyll at multiple depths across the water
column. While we only used surface chlorophyll values to ensure
r the remote sensing (a) and in-situ (b)monitoring products. UT LEC is given a separate y-
lfunctions that resulted in only four images available over thewhole CHAB season. NCCOS:
itute MODIS Surface Scum Index; MTRI MO TOT: Michigan Tech Research Institute MODIS
iFS Surface Scum Index; MTRI SW TOT: Michigan Tech Research Institute SeaWiFS Total
akes Environmental Research Laboratory; EPA: Environmental Protection Agency.

http://www.ngdc.noaa.gov
http://www3.epa.gov/greatlakes/monitoring/
http://www3.epa.gov/greatlakes/monitoring/
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consistency with GLERL bloom estimates, we compared EPA bloom size
estimates obtained using chlorophyll measurements taken below the
surface with estimates obtained by calculating the average chlorophyll
value across multiple depths throughout the whole water column. The
two sets of bloom size measurements align very closely, showing com-
parable relative inter-annual variability (R2 = 0.95).

2.2.4. NOAA-NCCOS remote sensing (2002–2013)
CHAB size estimates have been generated by NOAA's National Cen-

ters for Coastal Ocean Science (NOAA-NCCOS, hereafter abbreviated as
NCCOS) using images from the MEdium-spectral Resolution Imaging
Spectrometer (MERIS; 2002–2011) and from the Moderate Resolution
Imaging Spectroradiometer (MODIS; 2012–present) (Stumpf et al.,
2012; Wynne et al., 2013; Wynne et al., 2010; Wynne et al., 2008).
Cyanobacteria biomass is quantified and expressed in terms of a
“Cyanobacteria Index” (CI) that is positively related to cyanobacteria
abundance in the top portion of the water column (Wynne et al.,
2013; Wynne et al., 2010). The CI thus represents the blue-green por-
tion of total surface chlorophyll. Individual cloud-free satellite image
pixels are compiled into 10-day composites by dividing the CHAB sea-
son (Jun–Oct) into discrete 10-day periods and by taking the highest
CI value observed at each cloud-free pixel during each period (Stumpf
et al., 2012;Wynne and Stumpf, 2015). These composites are developed
to reflect the total biomass of Microcystis during each 10-day period.

Bloom intensity is calculated by summing CI values across all pixels
within western Lake Erie for each 10-day composite, and annual bloom
size is calculated as the maximum 30-day (i.e., three 10-day compos-
ites) moving average, according to methods established in Stumpf et
al. (2012). One CI corresponds to approximately 1.2 × 1020

cyanobacteria cells (Stumpf et al., 2012), and is equivalent to approxi-
mately 4800 metric tons (MT) cyanobacteria dry weight (Obenour et
al., 2014).We converted cell dryweight to chlorophyll-a using the aver-
age chlorophyll content of Microcystis cells measured in western Lake
Erie (0.006125 g/g dry wt; Chaffin et al., 2012).

2.2.5. MTRI remote sensing (2002–2013)
CHABs in western Lake Erie are mapped by the Michigan Tech Re-

search Institute (MTRI) using MODIS and Sea-Viewing Wide Field-of-
View Sensor (SeaWiFS) satellite imagery by using the Color Producing
Agent Algorithm (CPA-A) (Shuchman et al., 2013) to first retrieve
total chlorophyll-a concentration and then classify pixels as CHABs
when chlorophyll exceeds 20 μg/L and water temperature is N18 °C
(Sayers et al., 2016; Shuchman, 2014). The CPA-A is a multi-spectral
bio-optical retrieval procedurewhich simultaneously estimates concen-
trations of the three primary color producing agents (chlorophyll, col-
ored dissolved organic matter, and suspended minerals). This
approach allows for total chlorophyll estimation in complex waters,
such as those found in Lake Erie (Shuchman et al., 2013), from SeaWiFS
and MODIS data.

Surface scum accumulations (Fig. S3) aremapped separately using a
Surface Scum Index (SSI) algorithm developed byMTRI, which is an ad-
aptation of the Normalized Difference Vegetation Index (NDVI) (Rouse
et al., 1973) and which is also applicable to all of the above mentioned
sensors. While the CPA-A algorithm maps total chlorophyll-a concen-
trations for pixels where no scum is present, the SSI is a presence/ab-
sence indicator that identifies pixels with surface scum, but does not
presently provide a measure of chlorophyll concentration within the
scum. Chlorophyll concentrations within a Microcystis scum layer typi-
cally show high spatial variability (G. Fahnenstiel and T. Bridgeman,
pers. comm.), so that given the limited scum sampling data and relative-
ly coarse satellite resolution (~1 km), any assumption of the average
scum chlorophyll content is a rough approximation. However, to com-
pare the relative variability in surface scum estimates derived from
the current version of the SSI algorithm with other available satellite
products, we approximated the average chlorophyll content of surface
scum to be equivalent to the total MT chlorophyll found in the top
2 m of the water column assuming a concentration equal to the 99th
percentile of the distribution of surface chlorophyll concentrationsmea-
sured in the western basin by NOAA-GLERL over the period 2008–2013
(200 μg/L).

Hereafter we refer to the two time series of MTRI surface scum esti-
mates as MO SSI (from MODIS images) and SW SSI (from SeaWiFS im-
ages). While we report surface scum estimates obtained from both
remote sensing products, only the MO SSI time series was included in
our modeling analyses. This is because the SW SSI time series is restrict-
ed to a timeperiodwhen several years had low surface scumoccurrence
(Fig. 2a), resulting in a relatively low number of data points exhibiting
scum values significantly larger than zero.

In addition to the two surface scum time series, we developed two
separate time series - MO TOT and SW TOT - where total bloom size
was calculated as the sum of the MT chl-a calculated for the surface
scum pixels and the MT chl-a calculated for all non-scum pixels in
which chl-a N 20 μg/L (Sayers et al., 2016).

In several MTRI MODIS and SeaWiFS images, cloud cover resulted in
a varying number of pixels with missing data, possibly leading to CHAB
size underestimation. To correct for bias in images with less than one
third of pixels missing, we rescaled the observed chlorophyll mass
using the ratio of thewestern basin area (~3000 km2) to the total visible
area in each image. However, if over one third of an image's pixels were
missing, the image was considered unreliable, and removed from this
analysis. In 2009, only four SeaWiFS images are available throughout
the CHAB season due to severe sensormalfunctions.We therefore omit-
ted 2009 SeaWiFS data from analyses.

2.3. Environmental data and predictor variable development

We considered a suite of candidate physical, chemical, andmeteoro-
logical predictors that are hypothesized to influence CHAB severity and
seasonal dynamics (Table 1). Anthropogenic nutrient enrichment is rec-
ognized as one of the major drivers of cyanobacteria blooms in aquatic
systems (Brookes and Carey, 2011; Downing et al., 2001; Paerl et al.,
2011), and spring TP loading from the Maumee River has been shown
to explain a large portion of the inter-annual variability in CHAB size
in western Lake Erie (Obenour et al., 2014; Stumpf et al., 2012).

We calculated monthly TP, dissolved reactive phosphorus (DRP),
and total nitrogen (TN) loads (MT) from the Maumee River using
river nutrient concentration data collected by Heidelberg University's
National Center for Water Quality Research (NCWQR, http://tinyurl.
com/jgq2jxp) and stream flow data from the United States Geological
Survey (USGS, http://www.usgs.gov/water). Missing nutrient concen-
trations were imputed as described in Obenour et al. (2014). Cumula-
tive loads from June, April to June, and February to June were included
in the models as potential explanatory variables.

Tributary discharge can also influence CHAB development by affect-
ing lake turbidity, local circulation patterns, stratification, and residence
time (Mitrovic et al., 2003; Verspagen et al., 2006). Because blooms in
thewestern basin of Lake Erie typically originate and peak in the area in-
fluenced by the Maumee River plume (Wynne and Stumpf, 2015), we
included Maumee River flow (m3/s) as a candidate predictor.

Lake circulation and mixing regime are affected by wind forcing
(Beletsky et al., 2013; Michalak et al., 2013;Wynne et al., 2011). Hourly
wind speed (m/s) and wind direction (degrees from true North) were
acquired from NOAA's National Buoy Data Center (Buoy Station
45005, http://www.ndbc.noaa.gov) (Michalak et al., 2013; Zhou et al.,
2015). Wind speed and direction were missing from only 4.7% of the
hours in the study period, and were imputed using a linear regression
with data from the nearby Buoy Station THL01. After imputation, only
0.6% of the hourly data remained missing. Average daily wind stress
was calculated using the drag coefficient determined byHsu (1974) fol-
lowing the method reported in Wynne et al. (2010). Wind velocity for
the northerly and westerly components and wind stress were included
in the models.

http://tinyurl.com/jgq2jxp
http://tinyurl.com/jgq2jxp
http://www.usgs.gov/water
http://www.ndbc.noaa.gov


Table 1
Candidate environmental variables used in the BRT analysis.

Variable Description Mean (range)

WaterTemp_d
(°C)

Average lake surface
temperature for the western
basin (from the Great Lakes
Surface Environmental Analysis
(GLSEA) model), where d is the
2, 8, or 30 days previous

20.0 (8.7–27.5)

Stress_d (Pa) Average wind stress (calculated
following the method reported
in Wynne et al., 2010), where d
is the 2, 8, or 30 days previous

0.05 (0.00–0.86)

NortherlyWind_d
(m/s)

Average northerly wind
component (from the north)
recorded at National Data Buoy
Center's buoy 45005, where d is
the 2, 8, or 30 days previous

0.36 (−16.57–10.87)

WesterlyWind_d
(m/s)

Average westerly wind
component (from the west)
recorded at National Data Buoy
Center's buoy 45005, where d is
the 2, 8, or 30 days previous

0.29 (−13.55–10.26)

Irradiance_d
(W/m2)

Daily average of hourly Climate
Forecast System (CFSR)
downward shortwave radiation
flux at water surface in W/m2,
where d is the 2, 8, or 30 days
previous

224 (7–362)

Discharge_d
(m3/s)

Average daily Maumee river
discharge from United States
Geological Survey, where d is the
2, 8, or 30 days previous

112.7 (1.6–2217.2)

TP_June (MT) Sum of Maumee TP daily loads in
June

120.6 (5.0–496.8)

TP_JuneApril
(MT)

Sum of Maumee TP daily loads in
April–June

673.9 (39.6–1516.5)

TP_JuneFeb (MT) Sum of Maumee TP daily loads in
February–June

1343.5 (488.7–2622.3)

DRP_June (MT) Sum of Maumee DRP daily loads
in June

32.3 (0.2–124.5)

DRP_JuneApril
(MT)

Sum of Maumee DRP daily loads
in April–June

139.1 (7.1–265.5)

DRP_JuneFeb
(MT)

Sum of Maumee DRP daily loads
in February–June

282.8 (94.6–539.7)

TN_June (MT) Sum of Maumee TN daily loads
in June

3090.4 (72.7–10,115.8)

TN_JuneApril
(MT)

Sum of Maumee TN daily loads
in April–June

14,069.7 (1092.1–26,281.1)

TN_JuneFeb (MT) Sum of Maumee TN daily loads
in February–June

23,894.1 (6499.0–38,605.0)

Year Yearly temporal trend (2002–2013)
Month Monthly temporal trend (5–10)
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Water temperature may promote cyanobacteria development both
directly by affecting algal growth rates, and indirectly by enhancing
water column stability (Jöhnk et al., 2008; Paerl and Huisman, 2008).
Daily surface water temperatures (°C) were acquired from GLERL's
Great Lakes Surface Environmental Analysis (GLSEA) mapping effort
and averaged over the entire western basin.

Solar irradiance influences algal photosynthetic and growth rates,
and modulates the outcome of competition among phytoplankton
taxa with different light requirements (Havens et al., 1998; Huisman
et al., 1999; Litchman, 1998). Furthermore, light availability influences
Microcystis cell buoyancy by controlling carbohydrate production and
accumulation through photosynthesis (Ibelings et al., 1991;
Kromkamp andMur, 1984;Wallace and Hamilton, 1999). Hourly short-
wave radiation data (W/m2) were acquired from NOAA's National Cen-
ter for Environmental Prediction's Climate Forecast System Re-Analysis
(CFSR, http://rda.ucar.edu/), and daily average values were calculated.

For each meteorological and hydrological predictor (wind velocity,
wind stress, irradiance, temperature, and river flow), three time-lagged
variableswere included as candidate predictors in themodel. Specifical-
ly, we calculated average values for the 2 days, 8 days, and 30 days
preceding each sampling date, to capture potential effects of each vari-
able at different time scales leading up to each bloom observation
(Millie et al., 2014) while minimizing collinearity among time-lagged
variables and preventing model over-fitting. For example, wind forcing
is expected to exert both a short-term (hourly/daily) impact on bloom
dynamics by modulating mixing of the water column as well as a lon-
ger-term effect by driving lake circulation, currents, and subsequently
water/nutrient residence time (Michalak et al., 2013; Zhou et al., 2015).

Monthly and yearly temporal trend components were also included
in the models to assess whether any consistent pattern in bloom sea-
sonality emerged across monitoring products (monthly trend) and
whether our models would confirm previous findings reporting an in-
creased susceptibility of western Lake Erie to large blooms (yearly
trend; Obenour et al., 2014).

2.4. Boosted regression tree analysis

Boosted regression trees (BRT) are a non-parametric machine learn-
ing technique that has proven effective in capturing complex biophysi-
cal relationships that are difficult to discern when using classical
statistical approaches (Bhatt et al., 2013; Elith et al., 2008; Jouffray et
al., 2015; Leathwick et al., 2008). BRT combines regression tree algo-
rithms - models that recursively split response variables into homoge-
neous groups defined by threshold values of explanatory variables
(Breiman et al., 1984) - with boosting, a method for combining models
to enhance predictive performance (Friedman et al., 2000; Schapire,
2003). Classification and regression tree analysis has been widely ap-
plied to identify nonlinear, interactive relationships among variables
in ecological datasets, and to quantify critical thresholds of environmen-
tal drivers that trigger ecosystem responses (Cleveland et al., 2011;
Cottenie, 2005; Fernandez et al., 2006; Hambright et al., 2015), includ-
ing cyanobacteria blooms (Chen and Mynett, 2004; Huber et al., 2012;
Taranu et al., 2015; Wagner and Adrian, 2009). Despite the advantages
that regression tree algorithms offer in terms of ability tomodel discon-
tinuities and interactions, incorporate different types of response and
explanatory variables, and effectively select relevant predictors
(De'ath and Fabricius, 2000; De'ath, 2002), individual trees tend to
show relatively low robustness to small variations in the training
dataset, weak predictive performance, and inadequacy in modeling
smooth functions (Hastie et al., 2001; Murtaugh, 2009). Boosting algo-
rithms improve these limitations by fitting a large number of trees to
the data and then combining them to generate more accurate and ro-
bust predictions (De'ath, 2007; Elith et al., 2008; Friedman and
Meulman, 2003).

Compared with similar techniques that are based on fitting and av-
eraging results from many trees, such as bagged trees and random for-
ests (Cutler et al., 2007; Prasad et al., 2006), boosting algorithms differ
in that they fit trees sequentially to the data through a stage-wise pro-
cedure (Elith et al., 2008). Specifically, trees are fitted iteratively to the
training data, so that at each step a tree is added that minimizes the
overall model prediction error. Each newly added tree is fitted to the re-
siduals of the previous collection of trees, thereby progressively focus-
ing on unexplained variability in the response (Elith et al., 2008;
Hastie et al., 2001). At each step the fitted values are calculated as a lin-
ear combination of the trees fitted so far, so that the final BRTmodel can
be viewed as an additive model where each tree represents a model
term (Friedman et al., 2000).

BRTs have been extensively applied as an exploratory tool to com-
pare the nature and relative importance of functional relationships be-
tween variables across different sets of ecological observations
(Buston and Elith, 2011; Descy et al., 2016; Segurado et al., 2016;
Tisseuil et al., 2012; Walsh and Webb, 2016). We fit BRT models to
each set of CHAB observations separately to explore relationships be-
tween environmental drivers and bloom size and to assess the degree
of coherence inmodeling results acrossmonitoring products. A detailed
description of model parameterization and evaluation methods is

http://rda.ucar.edu
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provided in the Supplementary materials. Measures of the relative con-
tribution of predictor variables to overall model fit used in machine
learningmethods can be sensitive to high collinearity among predictors
and result in biased or unstable predictor ranking (Auret and Aldrich,
2011;Nicodemus andMalley, 2009). Becausewe foundhigh collinearity
among different nutrient predictors (Pearson's correlation coefficient
ranging between 0.94–0.97 among TP and DRP variables, 0.75–0.95
among TP and TN, and 0.74–0.91 among DRP and TN), we compared
the influence of different nutrients on model results by fitting three
models to each set of CHAB observations, using TP, DRP, or TN load as
the nutrient predictor, respectively, while leaving all other predictors
unchanged. We report results here of models fit using TP, which is a
key target of watershed nutrient reduction strategies (United States
and Canada, 2012), and discuss differences observed when replacing
TP predictors with DRP or TN. Results of models fit with DRP or TN are
included in the Supplementary materials.
3. Results

3.1. Inter-annual variability in bloom size

Time series of annual bloom size expressed as maximum 30-day
moving average observed in each year, similar to the approach used
by Stumpf et al. (2012), show that most monitoring products agree in
estimating the largest blooms in 2011 and 2013 (Fig. 2). NCCOS, MO
SSI, and UT LEC show similar overall patterns across the time series,
with relatively large blooms occurring in 2003 and after 2007 (Fig. 2
and Table 2). While relatively good agreement is observed between
MO TOT and NCCOS annual estimates in years after 2007, MO TOT ex-
hibits relatively larger bloom sizes than NCCOS in the first part of the
time series. Several other discrepancies emerge when comparing rela-
tive inter-annual variability in bloom size across monitoring products
(Fig. 2). For example, while most products exhibit the largest pre-
2008 bloom in 2003, the largest pre-2008 bloom occurred in 2004 ac-
cording toMOTOT and SWTOT and in 2006 according to EPA. Similarly,
while MO TOT and NCCOS report blooms of somewhat comparable size
in 2008–2010, UT LEC and GLERL show substantial relative inter-annual
variability in these years, with the 2009 (GLERL) and 2010 (UT LEC)
blooms being markedly smaller than those reported in other years.
3.2. Environmental drivers of bloom size: comparison across monitoring
products

Most BRT models explained between 33% and 50% of the temporal
variability in individual monitoring products, based on cross-validation
performance (Table 3). An exception was the BRT model for scum only
(MO SSI), which explained only 18% of response variability. All models
identified seven or more environmental variables as important for
bloom prediction (i.e., with a relative influence ≥5%, Table 3).
Table 2
Pearson's correlation coefficients between annual bloom size estimates (peak 30-daymoving av
in bold, while the number of paired data points used for each calculation is reported in parenthe
points are available (2008 and 2010). Abbreviations as in Fig. 2.

Remote sensing

NCCOS MO TOT MO

Remote sensing MO TOT 0.82 (12)
MO SSI 0.76 (12) 0.82 (12)
SW SSI 0.92 (8) 0.34 (8) 0.5
SW TOT 0.76 (8) 0.66 (8) 0.7

In-situ UT LEC 0.88 (12) 0.81 (12) 0.8
GLERL 0.78 (6) 0.67 (6) 0.2
EPA 0.42 (12) 0.34 (12) 0.6
Partial dependence plots (Figs. 3 and 4) are used to display fitted
functions in BRT models and to evaluate relationships between the re-
sponse variable and individual predictors. In this analysis, we focus on
comparing the shape and sign of functional relationships between envi-
ronmental drivers and bloom size across CHAB monitoring products,
and on assessing the degree of coherence in identifying critical thresh-
olds of environmental drivers that are likely to determine an increase
or decrease in bloom size.
3.2.1. Riverine inputs: nutrient loading and river discharge
Generally, TP loading variables were identified as positive correlates of

bloom size in allmodels.When including TP as the nutrient load predictor,
TP_Junewas selected as themost important variable in theMOTOTmodel.
Models displayed a sharp increase in bloom size at TP_June varying be-
tween 10 and 95MT (Table 3; Figs. 3 and 4). Similar positive relationships
occurredwith TP_JuneFebruary in theNCCOS andMOSSImodels andwith
TP_JuneApril in the GLERL and MO SSI models, although the thresholds
triggering an increase in bloom size differed among models (Table 3).

Replacing TP predictors with DRP or TN did not substantially change
the amount of variability explained by themodels, nor the functional re-
lationships identified for other predictor variables (Tables S1 and S2).
DRP and TN loads were related positively to bloom size, like TP, al-
though the relative importance of different loading periods changed de-
pending on nutrient type (Tables S1 and S2).

River discharge showed up as a significant predictor in three of the
six models. Bloom size was negatively associated with increasing Dis-
charge_30 in the UT LEC and GLERL models, while SW TOT displayed a
u-shaped relationship with Discharge_2 (Table 3; Figs. 3 and 4).
3.2.2.Meteorological variables: water temperature, wind stress, wind direc-
tion and irradiance

WaterTemp_30 was selected as the most important predictor in the
UT LEC and GLERL models and identified as a correlate of bloom size in
all other models except MO TOT and SW TOT. All models showed a pos-
itive threshold response of bloom size to WaterTemp_30, with the
threshold ranging between 18 and 23 °C, depending on the model
(Table 3; Figs. 3 and 4).

Wind stress appeared in all but theMO SSI model with a relative in-
fluence ≥5% (Table 3). The model fitted to the NCCOS data displayed a
decrease in bloom size for Stress_8 N 0.08 Pa (Fig. 3). The UT LEC
model exhibited an opposite pattern, with a decrease in bloom size at
Stress_2 values N0.02 Pa and an increase at values N0.04 Pa. Other
models showed a positive response of bloom size for stress values
N0.03–0.05 Pa (Figs. 3 and 4).

Wind direction variables exhibited some discrepancies in the shape
of the fitted functions and associated thresholds across models.
NortherlyWind_30 values N−0.2 m/s were associated with an increase
in bloom size according to the GLERL model (Fig. 3). Positive values of
the northerly and westerly wind components were associated with
erage) fromdifferentmonitoring products. Coefficientswith p-value b 0.05 are highlighted
ses. Correlation betweenGLERL and SWSSI/TOTwas not calculated as only twopaired data

In-situ

SSI SW SSI SW TOT UT LEC GLERL

5 (8)
0 (8) 0.87 (8)
5 (12) 0.40 (8) 0.34 (8)
5 (6) 0.43 (6)
2 (12) 0.18 (8) 0.05 (8) 0.26 (12) 0.20 (6)



Table 3
Explanatory variable effects and contributions to eachfinal BRTmodel. For each variable, the shape of the relationshipwith the response is shown (+: positive,−: negative,∩ orᴜ: hump-
or u-shaped) alongside an approximate threshold(s) that defines that relationship. Relative contributions of each variable are given as a percent and they are scaled so that the sum is 100.
Only variableswith a relative influence ≥5% are shown. For eachmonitoring product, the optimal number of trees used to fit each final BRTmodel and the associatedmean cross-validated
R2 are listed along with their standard deviation. Abbreviations as in Table 1 and Fig. 2.

UT LEC GLERL NCCOS MTRI MO SSI MTRI MO TOT MTRI SW TOT

# Observations 93 78 170 280 280 127
# Trees (SD) 17,990 (7980) 15,367 (9045) 1630 (269) 8281 (1537) 1127 (182) 3338 (568)
CV-R2 (SD) 38.3% (2.5) 49.7% (2.6) 48.5% (1.6) 18.1% (1.7) 34.4% (1.2) 33.1% (1.9)
TP_JuneApril – – + 711 6% – – + 1278 8% – – – –
TP_JuneFebruary – – – – + 1135 6% + 1631 6% – – – –
TP June + 45 8% + 95 6% + 10 12% + 45 9% + 45 20% + 81 15%
Year – – + 8.5 6% + 5.4 16% + 4.6 12% + 2.6 10% + 1.5 5%
Month + 7.5 6% – – + 7.5 5% – – – – – –
WaterTemp_30 + 21 19% + 21.5 22% + 18 15% + 23 6% – – – –
Stress_2 ∪ 0.02, 0.04 7% – – – – – – + 0.03 12% + 0.02 14%
Stress_8 – – + 0.03 5% − 0.08 5% – – + 0.03 5% + 0.05 11%
Stress_30 – – – – – – – – – – – –
NortherlyWind_2 – – – – – – – – – – – –
NortherlyWind_8 – – – – – – ∩ −2.0, −1.3 6% – – – –
NortherlyWind_30 – – + −0.2 8% – – – – – – – –
WesterlyWind_2 – – – – – – ∩ −3.7, −2.3 6% – – – –
WesterlyWind_8 – – – – – – ∩ −1.8, −0.3 9% – – – –
WesterlyWind_30 – – – – – – − −0.9 9% – – ∪ −0.8, 0.1 8%
Irradiance_2 ∩ 215, 291 5% – – ∩ 131, 289 5% − 172 5% − 238 9% – –
Irradiance_8 ∩ 210, 243 5% ∩ 236, 252 6% – – – – − 219 6% – –
Irradiance_30 – – – – – – – – − 221 6% ∪ 233, 277 18%
Discharge_2 – – – – – – – – – – ∪ 26, 61 6%
Discharge_30 − 105 11% − 33 6% – – – – – – – –

Fig. 3. Partial dependency plots for UT LEC, GLERL, and NCCOS. For each monitoring product, the six most influential variables are shown in decreasing order of relative importance (see
Table 3). Bloom size has been scaled to 1 at the maximum value observed by eachmonitoring product to facilitate comparisons of predictor effect size across models. Abbreviations as in
Table 1 and Fig. 2.
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Fig. 4. Partial dependency plots forMTRIMOSSI,MTRIMO TOT, andMTRI SWTOT. For eachmonitoring product, the sixmost influential variables are shown in decreasing order of relative
importance (see Table 3). Bloom size has been scaled to 1 at the maximum value observed by each monitoring product to facilitate comparisons of predictor effect size across models.
Abbreviations as in Table 1 and Fig. 2.
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low bloom sizes in theMO SSI model (Fig. 4), while SW TOT showed an
u-shaped relationship with WesterlyWind_30 (Fig. 4).

The influence of irradiance was ≥5% in all models. According to the
MO TOT and SW TOTmodels, high irradiance values were mostly associ-
ated with monotonic decreases in bloom size, with the exception of a
somewhat u-shaped relationship found between Irradiance_30 and SW
TOT estimates (Fig. 4). The UT LEC, GLERL, and NCCOS models exhibited
a hump-shaped relationship of bloom sizewith irradiance (Figs. 3 and 4).

3.2.3. Temporal trend
The yearly temporal trend was selected as the most important pre-

dictor for MO SSI and NCCOS (Table 3). A positive yearly temporal
trend in bloom size was evident in all but the UT LEC model, although
the trend begins in different years according to different monitoring
products (Table 3). The monthly trend had a relative contribution ≥5%
in the UT LEC and NCCOS models, with a positive threshold in mid-
July (Month = 7.5; Table 3).

3.2.4. Two-way interactions
Models fitted to different monitoring products identified different

sets of two-way interactions asmost influential, with limited consisten-
cy across products (Tables S3–S5). A positive interactive effect between
WaterTemp_30 and nutrient loading was ranked among the strongest
interactions by several models (Tables S3–S5). The NCCOS and MO SSI
models showed high relative strength for interactions involving the
yearly trend and meteorological predictors, while MO SSI also selected
multiple interactions between wind direction variables and nutrient
loading (Tables S3–S5).

4. Discussion

4.1. Coherent patterns across CHAB monitoring products

Mostmonitoringproducts exhibit an increase in bloom size in recent
years (Fig. 2), and most models show a positive yearly temporal trend,
independent of other predictors (Table 3). This is consistent with previ-
ous findings suggesting a gradual increase in the lake's susceptibility to
CHAB formation over the past decade (Obenour et al., 2014), similar to
what has been observed in numerous lakes worldwide (Paerl and Paul,
2012; Taranu et al., 2015). Some of the models also exhibit highly
ranked interactions between the yearly trend andmultiple meteorolog-
ical factors, such as a positive interaction between WaterTemp_30 and
Year and between Irradiance_2 and Year for the NCCOS model (Fig.
S4). This further suggests that the system's response to external drivers
might have changed over time, although differences in the interacting
factors across models make it difficult to formulate hypotheses on the
potential underlying mechanisms.

Most monitoring products also confirm the importance of nutrient
loading as a driver of relative variability in CHAB size, although the
high correlation among TP, DRP, and TN loads did not allow us to iden-
tify a preferred nutrient predictor. Bioassay studies duringwestern Lake
Erie blooms indicate that phosphorus is often the limiting nutrient for
algal growth, although nitrogen limitation can occur in late summer
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(Chaffin et al., 2013), and recent work has highlighted the role of nitro-
gen in promoting the growth of toxic strains of Microcystis in Lake Erie
(Gobler et al., 2016; Harke et al., 2016). The role of phosphorus loads
in stimulating CHABs in western Lake Erie has been shown by multiple
studies (Bertani et al., 2016; Michalak et al., 2013; Obenour et al., 2014;
Stumpf et al., 2016; Stumpf et al., 2012; Verhamme et al., in review), and
TP and DRP load targets have recently been set for theMaumee River by
the United States and Canada under the Great Lakes Water Quality
Agreement (GLWQA) Amendment of 2012 (United States and Canada,
2015). Specifically, a spring (Mar-Jul) TP loading target of 860 MT and
a corresponding DRP loading target of 186 MT were recommended to
significantly reduce CHAB formation based on results from a multiple
modeling approach (Scavia et al., 2016). The thresholds identified for
the April–June TP load by the GLERL model (711 MT, ~237 MT/
month) and for the February–June TP load by the NCCOS model
(1135 MT, ~227 MT/month) are comparable to the TP load thresholds
determined for the Mar–Jul period by most cyanobacteria models
used in the GLWQA effort (125–308 MT/month; Scavia et al., 2016).
The higher TP_JuneApril and TP_JuneFebruary thresholds extracted by
theMO SSImodelmight be due to the fact that this product only records
surface scum, a phenomenon that does not appear to be strictly propor-
tional to overall bloom size. In fact, when comparing time series of total
bloom size (e.g., MO TOT and NCCOS) with the scum-only MO SSI prod-
uct, a few years showhigh total bloom size and relatively large spring TP
loads, but comparably low surface scum occurrence (e.g., 2003, 2008,
2010; Figs. 2a and S1).

Despite the positive relationships generally found between bloom
size and nutrient loads, the fact that different load time windows were
selected as influential predictors by different monitoring products sug-
gests that inconsistencies in inter-annual variability in bloom sizemight
lead to different conclusions on the most critical loading period (Table
3).

Most monitoring products show a positive relationship between
bloom size and average water temperature in the preceding 30 days,
whereas shorter-lagged temperature variables are never selected as in-
fluential predictors (Table 3). The temperature threshold triggering an
increase in bloom size is higher for the scum model (~23 °C) than for
other models (~18–21 °C), suggesting that higher critical meteorologi-
cal thresholds might need to be crossed for surface scum to form. Espe-
cially high surface water temperatures develop during prolonged low-
mixing, calm summer conditions, which are known to enhance scum
formation (Ibelings et al., 2003; Soranno, 1997). All models show max-
imum bloom size whenWaterTemp_30 values exceed 23–25 °C, which
is consistent with results of a Lake Erie-specific study based on the
GLERL time series (Millie et al., 2014) andmore generally with observa-
tions of Microcystis growth rates reaching maxima at temperatures ≥
25 °C (Butterwick et al., 2005; Reynolds, 2006).

The consistent positive relationship between bloom size and
WaterTemp_30 indicates a marked seasonality in bloom development
(Wynne and Stumpf, 2015). Ho and Michalak (2015) compared bloom
seasonal timing in western Lake Erie using the NCCOS and UT LEC
2002–2011 time series, and they found that the average timing of
bloom onset was around mid-July for both monitoring products,
which agrees with the positive threshold identified for the monthly
trend by the UT LEC and NCCOS models (Monthly = 7.5, i.e. mid-July,
Table 3) and with a recent in-depth synthesis of the NCCOS time series
(Wynne and Stumpf, 2015). All other models identified the same sea-
sonal timing associated with an increase in bloom size, although the
contribution to model fit was below 5% for most models, likely due to
the fact that WaterTemp_30 explains a large portion of bloom
seasonality.

The positive interaction betweenWaterTemp_30 and nutrient load-
ing emerging from multiple models agrees with the known ecology of
Microcystis blooms, which typically peak when high nutrient inputs
are combined with favorable physical conditions in late summer
(Davis et al., 2009; Taranu et al., 2012).
The negative relationship between bloom size and river discharge
exhibited by the two in-situ monitoring products (Table 3), whose sta-
tions are under the direct influence of the Maumee river plume (Fig.
1), is consistent with the notion of cyanobacteria growth being favored
by lower summer flushing rates and higher residence time (Elliott,
2010; Huber et al., 2012; Michalak et al., 2013). The u-shaped relation-
ship found between river flow in the previous two days and SW TOT
might be due to occasional high bloom estimates exhibited by this prod-
uct during high-discharge events resulting in increased water column
turbidity and potential bloom size overestimation (see next section).
River discharge is used to calculate nutrient loads, so that onemight ex-
pect a similar effect of these two predictors in the models. However,
while we included nutrient loading in the model as cumulative values
over different spring periods, river discharge was included as average
values over the days preceding each bloom estimate throughout the
summer. As a result, while the load variables provide an estimate of
the overall amount of nutrients delivered in spring, the discharge vari-
ables quantify the effect of intra-seasonal changes in river hydrology
on bloom size during the CHAB season. The effect of river hydrology is
particularly relevant in the context of potential future climate change-
driven shifts in the timing, frequency, and intensity of extremeweather
events, such as storms and droughts (Michalak et al., 2013).

4.2. Discrepancies across CHAB monitoring products

Relationships between bloom size and wind stress were less consis-
tent across the various monitoring products. NCCOS estimates exhibit a
negative relationship with wind stress, with a decrease at
Stress_8 N 0.08 Pa (Table 3). In a previous study relating NCCOS bloom
estimates and wind stress in western Lake Erie, Wynne et al. (2010) re-
ported that wind stress N0.1 Pa resulted in a decrease in remotely
sensed bloom size due to mixing of cyanobacteria cells through the
water column and subsequent reduction in satellite-detectable near-
surface concentrations. The relationship between bloom size and wind
stress might therefore be influenced by the inherent constraint that re-
mote sensing only detects near-surface cyanobacteria accumulations,
especially in turbid, eutrophic freshwater (Kutser et al., 2008; Wynne
et al., 2010). The coupling of in-situ surveys with remote sensing ap-
proaches may overcome this limitation because samples collected
deeper in the water column may be less strongly affected by wind
stress. In any case, the relationship between CHABs and wind is expect-
ed to be complex, because whileMicrocystis is typically favored by high
water column stability, and loses its competitive advantage over non-
buoyant phytoplankton under well-mixed conditions (Ibelings et al.,
2003; Jöhnk et al., 2008; Visser et al., 1996), relatively short wind-in-
duced mixing events preceding calm conditions might have a positive
effect on overall cyanobacteria abundance by enhancing re-suspension
of nutrients and overwintering cells (Chaffin et al., 2014; Preston et al.,
1980; Verspagen et al., 2005).

The positive relationships with wind stress found for other remote
sensing products (i.e., MO TOT and SW TOT) contrast with NCCOS re-
sults. Differences in the estimated effect of wind forcing may be due to
discrepancies in short-term intra-seasonal bloom dynamics across
monitoring products (Fig. S2). One illustrative example is represented
by the year 2004. In June and September 2004, MO TOT and SW TOT
show short-lived peaks in bloom size that do not appear in the NCCOS
product (Fig. S2), resulting in the MO TOT and SW TOT 2004 annual
bloom size being larger than that recorded in 2003 (Fig. 2a). Inherent
differences in the characteristics of the two remote sensing algorithms
(CPA-A for MO and SW TOT products versus CI for NCCOS) likely con-
tribute to these and other similar short-term discrepancies. While
NCCOS data quantify only the cyanobacterial component of the phyto-
plankton assemblage, MO and SW TOT estimate total chlorophyll,
which includes other algal groups. Although high chlorophyll levels
during the bloom season have generally been dominated byMicrocystis
spp. in recent years (Bridgeman et al., 2013; Millie et al., 2014), the
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contribution of eukaryotic phytoplankton to total chlorophyll can be
substantial especially in the beginning and the end of the CHAB season
(Bridgeman et al., 2012; Millie et al., 2009), thereby leading to higher
chlorophyll values estimated by MO TOT and SW TOT relative to
NCCOS. Indeed, when comparing the three satellite products in terms
of bloom areal extent only (not shown), without quantifying chloro-
phyll content, some of the observed discrepancies are mitigated (see
Shuchman, 2014). Different sensors and algorithms may also respond
differently when large sediment plumes affect water turbidity (Park et
al., 2010;Wynne et al., 2013), as is often the case in the area influenced
by theMaumee River during high discharge or highwind events. For ex-
ample, changes in the optical properties of water associated with high
sediment concentrations may result in occasional overestimation of
chlorophyll-a by the CPA-A algorithm. Accordingly, select high river
flow events (e.g., 2003, 2004, and 2007) or peaks in wind stress (e.g.,
2005, 2006) are associated with relatively higher bloom sizes detected
by MO TOT and SW TOT compared to NCCOS (Fig. S2). This might also
explain the positive relationship found between SW TOT estimates
and Discharge_2 N 60 m3/s. MODIS and SeaWiFS bands may also incur
signal saturation under high surface scum (Reinart and Kutser, 2006;
Wynne et al., 2013), which led to the development of the SSI algorithm.
However, chlorophyll concentration estimates for surface scum are pro-
visional (seeMaterials andmethods section), increasing the uncertainty
in overall bloom intensity estimates when large scums are present. On
the other hand, the NCCOS time series is made of composite estimates
obtained by combining images from multiple days, so that temporal
variability is reduced, potentially affecting relationships with short-
lagged environmental drivers. The procedure adopted to generate the
NCCOS composites, based on summing the maximum biomass values
recorded at each pixel over 10-day periods, may also be prone to occa-
sional bloom extent overestimation when the bloom is transported to a
different region of the basin between subsequent satellite images. The
time of the day when satellites pass over the lake (~10 am for MERIS
and ~2 pm for MODIS AQUA and SeaWiFS) might also affect detected
near-surface bloom size, due to relatively rapid daily vertical migration
patterns typically observed for buoyant cyanobacteria (Ibelings et al.,
1991; Kromkamp and Mur, 1984; Wynne et al., 2013). On a calm day
in western Lake Erie cyanobacteria tend to form surface scum accumu-
lations in mid-day (~11 am) and start to subside in the early afternoon
(~2 pm), until no scum is typically present by 6 pm (T. Bridgeman, pers.
comm.).

Discrepancies in intra-seasonal bloom dynamics also occur when
comparing remote sensing vs. in-situ monitoring products (Fig. S2). In
the case of western Lake Erie, inconsistencies in bloom temporal dy-
namics between in-situ and satellite estimates have been partly attrib-
uted to the proximity of in-situ sampling areas to the region of bloom
initiation (Ho and Michalak, 2015). More generally, the high spatial
patchiness that typically characterizes cyanobacteria blooms is expect-
ed to affect CHAB severity estimates obtained from in-situ vs. satellite
approaches differently. With respect to spatial coverage, satellite prod-
ucts represent an obvious enhancement over in-situ sampling, which
is typically limited to a few point stations over a restricted portion of
the lake. For example, extremely high chlorophyll concentrations mea-
sured at one GLERL site near the mouth of the Maumee in 2008 exert a
disproportionate influence on overall bloom size estimates. Although
more sophisticated spatial integration methods than that used here
could improve in-situ estimates, the limitations associatedwith treating
measurements from a limited number of stations as representative of a
300 km2 area remain salient. The limited spatial coverage of in-situ sur-
veys may also result in CHAB size underestimation when the bloom ex-
tends beyond or is transported away from the sampling area, such as in
2011 and 2013 in Lake Erie (Ho and Michalak, 2015). On the other
hand, some satellite sensors tend to exhibit signal saturation
when large patches of extremely high cyanobacteria biomass or
sediment are present (Kutser, 2004; Reinart and Kutser, 2006;
Wynne et al., 2013), potentially contributing to discrepancies in
the characterization of CHAB seasonal dynamics when compared
with in-situ measurements.

Some inconsistencies in bloom temporal dynamics occur also across
in-situ monitoring approaches (Fig. S2). Although UT LEC and GLERL
sites cover a similar portion of the lake in terms of areal extent, the
somewhat different location of the sampling areas (Fig. 1) might lead
to differences in the observed CHAB seasonal dynamics due to bloom
horizontal movements and high spatial variability (Ho and Michalak,
2015). Differences in sampling techniques might also affect in-situ
bloom estimates. For instance, surface cyanobacteria accumulations
are better captured through vertical plankton tows (UT LEC) than by
sampling below the surface with a Niskin bottle (GLERL). Accordingly,
the GLERL product shows less pronounced relative seasonal peaks com-
pared to UT LEC during years with high scum occurrence (e.g., 2011 and
2013; Fig. S2). As mentioned above, the lack of taxonomic specificity of
total chlorophyll measurements might also lead to inconsistencies
when compared with taxon-specific surveys in cases when Microcystis
is not the dominant taxon. Methodological differences across in-situ sam-
pling approaches often depend on the original intended purpose of the
monitoring programs and associated research questions. For example,
GLERL surveys were initially designed to provide ground-truth informa-
tion for satellite algorithm calibration. Similarly, the EPA sampling pro-
gram in western Lake Erie is part of a broader limnological program
initiated to monitor water quality in the offshore waters of the Great
Lakes. As a result, EPA stations are spread across the open waters of the
western basin, including regions that are typically not impacted by
CHABs, and only two stations overlap with the GLERL and UT LEC sam-
pling areas (Fig. 1). Although theoriginal scopeof some in-situmonitoring
programs might limit their application to characterize absolute bloom
size, they still provide valuable information on inter-annual variability
in relative bloom intensity to validate, integrate, and augment CHAB esti-
mates from other long-term surveys. In this perspective, some of the in-
situ and remote sensing datasets considered here have been integrated
in recent CHABmodeling approaches to supportmodel calibration or val-
idation (Verhamme et al. in review; Obenour et al., 2014).

In general, method-specific limitations in characterizing bloom var-
iability need to be taken into careful consideration when using CHAB
monitoring data to infer relationships with environmental drivers. Dis-
crepancies in short-term bloom temporal dynamics across monitoring
productsmay affect themodeled relationshipswith variables character-
ized bymarked fluctuations on hourly to daily time scales, such aswind,
leading to contrasting conclusions on their overall effect on bloom size
(Table 3). The development of quantitative approaches to integrate
multiple types of bloom observations in CHAB modeling efforts
may help overcome the specific limitations of individual monitor-
ing methods and improve bloom characterization and modeling
capabilities.

The negative effect of high irradiance levels estimated by some
modelsmay suggest that photo-inhibitionmight play a role in influenc-
ing bloom seasonal dynamics (Ibelings and Maberly, 1998). However,
while photo-inhibition of surface blooms has been occasionally ob-
served in Lake Erie (Chaffin et al., 2012),Microcystis is known to possess
several mechanisms to adapt to high levels of irradiance (Paerl and
Otten, 2013b; Paerl et al., 1985; Sommaruga et al., 2009), and the rela-
tively high turbidities often observed in western Lake Erie provide fur-
ther protection against severe photodamage (Chaffin et al., 2012). The
different irradiance thresholds identified by different models (Table 3)
make it difficult to formulate hypotheses on the irradiance levels that
might be detrimental for blooms in western Lake Erie, and more re-
search is needed on the possible influence of high irradiance on bloom
dynamics, especially in view of its potential to promote toxic strain
dominance in Microcystis populations (Paerl and Otten, 2013b).

The scum-only (MO SSI) model explains a lower portion of data var-
iability when compared to other remote sensing products (Table 3).
Surface scum formation is often a rapid and transient phenomenon,
whose accurate characterization requires an adequately high sampling
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frequency. Remote sensing theoretically offers higher temporal resolu-
tion than most long-term in-situ monitoring programs. However, limi-
tations in image availability or quality due to meteorological
conditions often cause multi-day gaps that hinder the characterization
of ephemeral surface bloom events. In addition, surface scum occur-
rence has increased only in the most recent years of the available time
period (Fig. 2a), resulting in a limited number of data points on which
to train the models. Interestingly, the scum-only model shows the larg-
est contribution of wind direction, including several interactive effects
between wind direction and various other predictors (Tables 3 and
S3–S5). The horizontal distribution and areal coverage of surface scum
might be affected by wind direction in a more direct way than subsur-
face blooms (Wynne et al., 2011). However, given the limitations
outlined above, and considering that the scum concentration estimates
are provisional and highly uncertain, extra caution should be taken in
interpreting results describing scum dynamics.

In relation to this, it is important to note that there are uncertainties
associated with some of the assumptions required to estimate total
bloom size from the monitoring data (see Materials and methods sec-
tion), and that these uncertainties are not explicitly accounted for in
themodeling analysis. While we followed establishedworkflows to cal-
culate bloom size (e.g., Stumpf et al., 2012; Bridgeman et al., 2013)
wherever possible and focused our analyses on relative bloom size rath-
er than absolute bloom size, enhancements in bloom detection technol-
ogies under development in western Lake Erie may help quantify and
reduce the uncertainty associated with some of those assumptions in
the future. For example, the MTRI SSI algorithm is currently being en-
hanced to provide quantitative estimates of scum concentrations. A
monitoring product capable of quantifying surface scum accumulations
is an especially important tool for water resource managers because
surface scums directly impede recreational uses due to distasteful visual
and odor cues (Fig. S3). A long-term dataset quantifying surface scum
areal coverage and concentration also has the potential to improve
our ability to understand andmodel environmental conditions promot-
ing scum development. The increasing deployment of advanced in-situ
and remote sensing bloom monitoring technologies, such as in-situ
water quality sensors and aerial hyperspectral sensors, will also offer
an unprecedented level of spatio-temporal resolution to augment
bloom estimates from more traditional monitoring approaches
(Bullerjahn et al., 2016).
5. Conclusions

Different CHAB monitoring products exhibit a high degree of coher-
ence in indicating that high nutrient inputs, high water temperature,
and low flushing rates are most conducive to bloom development. The
associated thresholds extracted by the BRT models are consistent with
Microcystis ecology andwith recent phosphorus load recommendations
derived from a multiple models approach.

However, the influence of environmental drivers characterized by
high short-term variability, such as wind forcing, appears less clear,
and conflicting results emerge when fitting the samemodel to different
monitoring products. This is likely due to the combination of high
spatio-temporal variability of cyanobacteria blooms and method-
specific limitations in capturing such variability at the appropriate
spatial and temporal scales. Such discrepancies have implications
for understanding functional relationships between environmental
factors and CHAB formation, and ultimately for developing models
capable of informing resource managers with accurate intra-season-
al bloom predictions. While previous studies have provided qualita-
tive assessments of the degree of inter-comparability of different
CHAB monitoring approaches in Lake Erie, to our knowledge this is
the first study applying a quantitative modeling approach to synthe-
size and compare multiple time series of CHAB estimates. The mon-
itoring approaches considered in this study are routinely used to
track and forecast CHABs in lakes worldwide, making the implica-
tions of our results relevant beyond the study lake.

Our analysis underscores the importance and challenges associated
with comparing multiple types of bloom measurements. Scientists and
resource managers are still faced with significant uncertainties in char-
acterizing bloomvariability, especially at fine temporal scales. Future ef-
forts should focus on implementing rigorous methods to generate
bloom size estimates that systematically integrate information from
multiple data sources. The development of methods that assimilate
data from multiple CHAB monitoring methods has the potential to
allow for more accurate bloom detection by leveraging the advantages
associated with each monitoring approach while overcoming the re-
spective limitations. Enhancing our ability to quantify bloom distribu-
tion and intensity is a key step for both informing resource managers
of bloom spatio-temporal impacts and for improving models aimed at
advancing our predictive understanding of harmful algal blooms.
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