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Abstract Cyanobacterial harmful algal blooms (CHABs) are a problem in western Lake Erie, and in eutro-
phic fresh waters worldwide. Western Lake Erie is a large (3000 km?), shallow (8 m mean depth), freshwater
system. CHABs occur from July to October, when stratification is intermittent in response to wind and sur-
face heating or cooling (polymictic). Existing forecast models give the present location and extent of CHABs
from satellite imagery, then predict two-dimensional (surface) CHAB movement in response to meteorology.
In this study, we simulated vertical distribution of buoyant Microcystis colonies, and 3-D advection, using a
Lagrangian particle model forced by currents and turbulent diffusivity from the Finite Volume Community
Ocean Model (FVCOM). We estimated the frequency distribution of Microcystis colony buoyant velocity from
measured size distributions and buoyant velocities. We evaluated several random-walk numerical schemes
to efficiently minimize particle accumulation artifacts. We selected the Milstein scheme, with linear interpo-
lation of the diffusivity profile in place of cubic splines, and varied the time step at each particle and step
based on the curvature of the local diffusivity profile to ensure that the Visser time step criterion was satis-
fied. Inclusion of vertical mixing with buoyancy significantly improved model skill statistics compared to an
advection-only model, and showed greater skill than a persistence forecast through simulation day 6, in a
series of 26 hindcast simulations from 2011. The simulations and in situ observations show the importance
of subtle thermal structure, typical of a polymictic lake, along with buoyancy in determining vertical and
horizontal distribution of Microcystis.

1. Introduction

Harmful algal blooms (HABs) are a global problem that is linked to anthropogenic eutrophication of inland
and coastal waters, and may be exacerbated by climate change [O'Neil et al.,, 2012]. Lake Erie has experi-
enced recurring blooms of toxin-producing cyanobacteria since the mid-1990s [Brittain et al., 2000; Michalak
et al., 2013; Wynne and Stumpf, 2015]. Lake Erie is the most productive, warm, and shallow of the Laurentian
Great Lakes of North America. In the open waters of Lake Erie, cyanobacterial harmful algal blooms (CHABs)
generally occur from July to October, and are dominated by the species Microcystis aeruginosa, which pro-
duces the group of hepatotoxin compounds known as microcystins [Rinta-Kanto et al., 2009]. CHABs occur
primarily in the shallow western basin, which receives the main hydraulic load from the Detroit River in the
north and the main nutrient load from the Maumee River [Kane et al., 2014] in the southwest (Figure 1a).
Occasionally, CHABs are transported through the islands into the deeper central basin, while the eastern
basin is largely free of CHABs (Figure 1a) [Wynne and Stumpf, 2015]. A bloom of record-breaking intensity
and extent occurred in 2011. Analysis by Michalak et al. [2013] indicated that the conditions of meteorology
and agricultural land use that caused the 2011 record bloom are likely to recur, and the 2015 bloom subse-
quently exceeded the severity of the 2011 record bloom [Stumpf and Wynne, 2015].

Forecasts of CHAB abundance and spatial distribution are useful to water treatment plant operators, anglers,
recreational boaters, and beach users. Lake Erie is a source of drinking water to 11 million people [Lake Erie
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Figure 1. (a) Geographic location and bathymetry of Lake Erie, showing bordering United States and the Canadian province of Ontario. Fea-
tures of interest are identified, including (A) Maumee Bay, (B) Western Basin, (C) Gibraltar on the Detroit River, (D) Central Basin, (E) Eastern
Basin, and (F) Buffalo on the Niagara River. (b) An enlarged view of the western portion of the FVCOM model domain. FVCOM domain bound-
aries are indicated with a heavy black line, and node-centered tracer control elements with gray lines. Surface mixed layer depth was estimat-
ed in hindcast simulations at the stations identified with symbols. Well-mixed condition simulations were conducted at the named stations.
Profiles of temperature and cyanobacterial chlorophyll concentration were measured at the stations indicated by red triangles.

LaMP, 2011]. In 2014, the City of Toledo issued a do-not-drink order that affected a half million residents for
two days as a result of contamination of treated water by microcystins [Henry, 2014]. In addition to spatial
forecasts, forecasts of Microcystis vertical distribution are of interest to water treatment plant operators
because intake structures are usually located subsurface, so the risk of toxins in their raw water may be
greater during mixing events than when Microcystis colonies are concentrated on the surface. In addition to
providing drinking water, Lake Erie supports economically valuable sport and commercial fisheries as well
as recreation and tourism.

Short-term and seasonal CHAB forecasts have been developed for Lake Erie. Seasonal forecasts predict the
annual bloom severity using statistical models based on the cumulative March to July phosphorus load from
the Maumee River, which are able to explain >90% of the interannual variance in bloom severity [Obenour
et al,, 2014]. Bloom severity is defined as the lake-wide cyanobacterial biomass averaged over the 30 days con-
taining the maximum biomass [Obenour et al., 2014; Stumpf et al., 2012], and has been estimated using both
satellite [Stumpf et al., 2012] and plankton tow data [Bridgeman et al.,, 2013]. The seasonal forecast is used by
water treatment plant managers for seasonal planning, to determine recommended phosphorus load reduc-
tions to meet commitments under the Great Lakes Water Quality Agreement [GLWQA Annex 4, 2015], and is
distributed to over 1600 subscribers. Short-term forecasts are distinct from the seasonal forecast in the greater
importance of physical transport processes over biological mechanisms in explaining short-term bloom vari-
ability. Experimental short-term forecasts have been developed for Lake Erie that indicate the present location
and extent of CHABs from satellite imagery, then predict future movement of the CHAB using forecast
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meteorology, a hydrodynamic model, and a Lagrangian particle tracking model to simulate horizontal advec-
tion of neutrally-buoyant particles at the water surface [Wynne et al,, 2013, 2011].

Skill assessment of short-term CHAB forecasts is needed so that forecast users may have an appropriate level
of confidence in forecast data, and for development of improved models. However, CHAB forecast skill assess-
ment can be challenging, and methods are not well established. Wynne et al. [2011] showed that a forecast
model more accurately predicted horizontal movement of the bloom centroid (center of mass) than a persis-
tence forecast over a ten-day simulation for an August 2003 event. A persistence forecast is a benchmark
used for model skill assessment in which no change is assumed from the initial observed location. The same
quantitative skill assessment method could not be applied in the case of an August 2008 event because cloud
cover and vertical mixing obscured parts of the bloom in subsequent images and prevented an accurate esti-
mate of the centroid location [Wynne et al, 2011]. In a detailed analysis of the August 2008 bloom in Lake
Erie, Wynne et al. [2010] found that wind speed was a significant predictor of apparent bloom intensity in sat-
ellite imagery, and presented evidence to support the hypothesis that variation in the mixing depth of the
buoyant cyanobacterial colonies was the underlying mechanism causing changes in surface concentration. In
a qualitative analysis of the first 3 years of the experimental Lake Erie CHAB forecast (2008-2010), Wynne et al.
[2013] concluded that the forecast provided useful information, but could be improved by a means to fill in
cloud-covered areas in the satellite images, and by simulation of vertical mixing of the buoyant cyanobacteria.

To simulate concentration profiles of buoyant particles produced by vertical mixing in stratified turbulence,
the partial differential equations governing advection and diffusion may be solved from an Eulerian or a
Lagrangian perspective; each approach has strengths and weaknesses. Real phytoplankton communities
have properties that vary among individuals within a population, such as size, specific gravity, light expo-
sure history, and nutrient quotas. A strength of Lagrangian particle models is that nearly continuous distri-
butions of properties can be represented by allowing properties to vary by particle [e.g., Ross and Sharples,
2008], while in Eulerian models property distributions are usually represented by a limited number of dis-
crete property classes [e.g., Medrano et al., 2013].

A weakness of the Lagrangian approach is that artificial accumulation of particles can occur in low diffusivity
areas in random-walk turbulence simulations for the case of spatially (vertically) nonuniform diffusivity if an
inappropriate numerical scheme or time step is used [Visser, 1997]. These artifacts can be easy to misinterpret
as features of interest. Several studies have applied Lagrangian particle models to the 1-D column case with
steady, idealized diffusivity profiles [Grawe et al., 2012; Ross and Sharples, 2008; Visser, 19971. In 3-D ocean and
lake models, use of random-walk vertical mixing schemes can be challenging because the required time step
varies spatially and temporally over the model domain. A fixed time step may be selected that is adequate in
most places and times [Huret et al, 2007], or in some cases a well-mixed profile was imposed in shallow
regions where a small time step would be required to avoid formation of artifacts [Gilbert et al., 2010]. Our
application required realistic rather than idealized diffusivity profiles for a polymictic lake in which conditions
are alternately turbulent and stratified, and to simulate concentration profiles rather than specify a well-mixed
condition, even in shallow areas, therefore some development of the random-walk approach was required.

We describe a short-term forecast system for CHAB abundance and distribution in Lake Erie that takes a simi-
lar approach to that of Wynne et al. [2011], but uses updated hydrodynamic and Lagrangian particle tracking
models, and includes a means of filling in cloud-covered areas of satellite images using model data from a
previous run. In addition, we describe a method to simulate vertical distribution of buoyant cyanobacteria in
stratified turbulence. We evaluated the performance of several random-walk turbulence numerical schemes in
terms of computational efficiency and their ability to minimize artifacts in simulations with vertically varying
diffusivity typical of a large polymictic lake. We compared simulated vertical distributions of cyanobacteria to
observed profiles in Lake Erie. Finally, we show that model skill statistics were improved by including vertical
mixing with buoyancy in hindcast simulations of the spatial distribution of the 2011 bloom in Lake Erie.

2. Methods

2.1. Hydrodynamic Model

The Finite Volume Community Ocean Model (FVCOM, v. 3.2) is an unstructured grid, finite-volume, free
surface, three-dimensional primitive equation ocean model that solves the momentum, continuity, temper-
ature, salinity, and density equations [Chen et al.,, 2003]. Turbulence closure is implemented through the
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MY-2.5 scheme for vertical mixing [Galperin et al., 1988], and the Smagorinsky scheme for horizontal mixing
[Smagorinsky, 1963]. FVCOM has been adapted and implemented for the Great Lakes in several recent stud-
ies [Anderson et al., 2015; Anderson and Schwab, 2013; Anderson et al., 2010; Bai et al., 2013], yielding accu-
rate predictions of temperature, water levels, and currents. In particular, FVCOM has been applied to Lake
Erie for extreme storm prediction [Anderson. et al., 2015] and serves as the oceanographic model underlying
NOAA'’s next-generation Lake Erie Operational Forecast System (LEOFS), a real-time short-term hydrody-
namic forecast model (http://tidesandcurrents.noaa.gov/ofs/leofs/leofs.html).

The FVCOM-based LEOFS model was applied for this study with bathymetry interpolated from the NOAA
National Geophysical Data Center. (www.ngdc.noaa.gov/mgg/greatlakes/greatlakes.html). The unstructured
grid consisted of 6106 nodes and 11,509 elements (Figure 1). Spatial resolution was 2 km in the central
basin, 1.5 km in the western basin, and 0.5 km in Maumee Bay and the islands (Figure 1b) to improve repre-
sentation of currents in these key areas for CHAB transport, with 20 uniform vertical sigma layers.

Dynamic water levels (6 min) were prescribed at open boundaries at the Detroit River and the Niagara River,
taken from adjustments to the NOAA/NOS gauges at Gibraltar (9044020) and Buffalo (9063020), to drive the
primary inflow and outflow, respectively (Figure 1a). Atmospheric forcing conditions were generated using
station-based interpolation methods as in the NOAA Great Lakes Coastal Forecasting System [Beletsky et al.,
2003]. Hourly meteorological forcing variables of wind speed, wind direction, air temperature, dewpoint
temperature, and cloud cover were interpolated over Lake Erie from several land-based meteorological sta-
tions and offshore NOAA/NDBC buoys (45004, 45132, and 45142), when available. Wind speeds were adjust-
ed to 10 m height and empirical relationships were used to adjust land-based meteorological variables for
over-lake modification [Beletsky et al., 2003].

Hydrodynamic model simulations were based on the real-time LEOFS nowcast, which was initialized on 1
January 2004 with uniform temperature of 2°C. For the 2011 scenario presented here, the hydrodynamic
model simulation was initialized on 1 January 2011 with initial conditions provided by the simulation from
the previous year, and produced hourly output of three-dimensional currents, water temperature, turbulent
diffusivity, and 2-D water level fluctuations.

2.2, Lagrangian Particle Tracking Model

Lagrangian particle tracking was accomplished using a Fortran program developed previously to study
transport of larval cod in the Gulf of Maine [Churchill et al., 2011; Huret et al., 2007], which is distributed as
part of the FVCOM code package (http://fvcom.smast.umassd.edu/), and has previously been applied in the
Great Lakes [Anderson and Phanikumar, 2011]. Advection of particles was determined by

d

aX(t)—V(X(t),t) (M
where X(t) is the three-dimensional particle position at time t, and V(X(t),t) is the three-dimensional, time vary-
ing velocity field. Linear interpolation in space and time was used to obtain V(X(t),t) from hourly archived
FVCOM output. The contribution of advection to the particle position was updated by integrating equation (1)
using an explicit fourth-order Runge-Kutta scheme with a time step, At = 600 s. Vertical mixing due to turbu-
lent eddy diffusivity was optionally simulated using one of several random-walk schemes, described below.
We used reflected boundary conditions at vertical and horizontal boundaries in all simulations.

2.3. Well-Mixed Condition Test

We compared the performance of several random walk vertical mixing numerical schemes using a well-
mixed condition test case [Visser, 1997] that can be used to evaluate whether a given numerical scheme
and time step will produce artifacts in simulated concentration profiles. In our case, the well-mixed condi-
tion simulation was performed by initiating 1000 particles, uniformly distributed through the water column,
then simulating 1-D vertical mixing with neutral buoyancy using time series of Lake Erie diffusivity profiles
output from FVCOM for the month of August 2011 (Table 1). Random noise in the simulated concentration
profiles decreases with increasing number of particles, and 1000 particles were found to be adequate in 1-D
simulations [Ross, and Sharples, 2004]. These simulations are expected to give uniform concentration at all
time regardless of the diffusivity profile, consistent with the Eulerian solution to the 1-D diffusion equation
with initial uniform concentration [Visser, 1997].
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To evaluate performance in the

Table 1. Dates of Measurements and Model Simulations . . .
well-mixed condition test in a way

Measurement or simulation Date

that is directly relevant to our appli-
Well-mixed condition simulations Aug 2011 . . .
Satellite images, 2-D, 3-D simulations 26 dates, Jul to Oct 2011 cation, we defined a signal-to-noise
Colony size distribution (FlowCam) 4 Aug 2014 ratio, SN, based on simulated sur-
Colony size distribution (microscopy) Weekly sampling face concentration,

Jul to Sep 2012 and 2013

Buoyant velocity measurements 15 and 21 Jul 2015 SN(t) — C(t)/\ 1.0—=Cym (t)\ )
Vertical profiles (FluoroProbe) Weekly sampling Jul to Sep 2015

where Cym (t) is the time-dependent

concentration in the 1 m thick sur-
face layer, normalized to the column-mean concentration, in a well-mixed condition simulation with neutral
buoyancy. A constant value of 1.0 is expected for Cym(t), therefore |1.0—Cym (t)| represents the magnitude
of “noise” due to artifacts and random fluctuations due to calculating concentration by counting discrete
particles in a control volume. The “signal” is provided by the analogous surface concentration, C(t), from an
identical simulation with buoyancy. A large value of SN indicates that artifacts are small compared to the
effect of interest, which is the fluctuation in surface concentration due to buoyancy. SN can be made arbi-
trarily large by using a small time step and a large number of particles, but at the expense of computational
time. We selected a value of 5 as a goal minimum value for SN, based on the “Rose criterion” for the detec-
tion limit of the human eye for image features [Rose, 1948]. Accordingly, we used the frequency of occur-
rence of SN <5 over the hourly records in a simulation as the performance criterion by which to evaluate
the numerical schemes and time step criteria.

2.4. Random Walk Vertical Mixing Schemes
We evaluated the Visser [1997] scheme, as-implemented by Huret et al. [2007]

2(t+0t)=2(t) +Wpdt+K1(z(t))ot+R 2Kf)5t 3)

where z(t) is the vertical position of the particle at time t, ot is the vertical random walk time step, w;, is a
floating/sinking/swimming vertical velocity component, K is the vertical turbulent diffusivity, K'=dK/dz, R is
a random variable sampled from a uniform distribution with zero mean and standard deviation ¢, and z=z
(t)+0.5K'(z(t))dt is a vertical position displaced from the particle position as a function of the diffusivity
gradient. Following Ross and Sharples [2004], a cubic spline interpolation was used to obtain a continuous,
differentiable diffusivity profile.

In addition to the Visser scheme, described above, we evaluated random walk vertical mixing schemes with
higher order accuracy including the Milstein, Strong 1.5 (51.5), and Platen two-step (PC2) schemes that were
implemented in Fortran for the General Ocean Turbulence Model by Grawe [2011]. After evaluating the perfor-
mance of 10 random walk schemes [Grawe, 2011], Grawe et al. [2012] recommended the use of either the Mil-
stein scheme or higher order schemes such as S1.5 or PC2. The order of accuracy (rate of convergence) of
numerical approximations to stochastic differential equations is separated into weak and strong cases, where
the weak case relates to the accuracy of the ensemble particle distribution, while the strong case relates to
the accuracy of particle trajectories [Grawe, 2011]. The weak order of accuracy of the schemes that we evaluat-
ed was 1 for Visser and Milstein and 2 for S1.5 and PC2. The strong order of accuracy was 1 for Milstein, 1.5 for
S1.5, and was not defined for Visser or PC2 [Grawe, 2011]. The Milstein scheme is

2(t+0t)=z(t) + w0t +0.5K (2(t)) [AW? + 5t + AW /2K (2(t)) (4)

where AW is a random variable drawn from a Gaussian distribution with zero mean and standard deviation
\/ot. Because the Milstein scheme is first order, linear interpolation of the diffusivity profile to obtain K(z(t))
and K’'(z(t)) are sufficient, and the added computational expense compared to the Visser scheme (equation
(3)) is minimal. The second-order schemes S1.5 and PC2 retain additional terms from the stochastic Taylor
expansion, including higher order derivatives that require the application of cubic splines to the diffusivity
profile, and S1.5 requires an additional random variable, therefore the second-order schemes have greater
computational expense. We refer to Grawe [2011] for a full explanation of the S1.5 and PC2 schemes.
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2.5. Random Walk Time Step

Visser [1997] introduced a time step criterion, ot < min (1/|K”|), where K" is the second derivative of the
diffusivity profile, so that the diffusivity profile is reasonably approximated by a first-order Taylor series
expansion over the range of particle displacement. Ross and Sharples [2004] found that

1

ot= 00K (5)
is acceptable in most applications. To ensure the use of an appropriate time step throughout a 3-D model
domain, and to avoid the need to specify an appropriate ¢t in advance, we modified the code of Huret et al.
[2007] to allow an appropriate value of Jt to be calculated and applied for each particle at each ot. To evalu-
ate equation (5) independently of spline interpolation, we calculated K” directly at the FVCOM sigma levels
using a centered finite difference approximation, and extended the profile beyond the surface and bottom
by reflection. We further limited 0.01 s < o6t > At. We tracked the minimum Jt during simulations to con-
firm that the lower limit of 0.01 s was rarely applied.

2.6. Measurement of Microcystis Colony Size Distribution

We assigned buoyant velocity in the model based on measured size distributions and regressions of buoy-
ant velocity versus colony diameter. We measured Microcystis colony diameter of Lugol preserved samples
collected from western Lake Erie in the summers of 2012, 2013, and 2014. In 2012 and 2013, colony diame-
ters were measured by microscopy (Table 1). In 2014, we used the FlowCam (Fluid Imaging Technologies).
The FlowCam captures images of individual colonies and estimates their equivalent spherical diameter by
image analysis. Wang et al. [2015] showed that counts and colony diameters of Microcystis given by Flow-
Cam and microscopic image analysis diameters were nearly identical. Colonies in Lake Erie are typically >50
um [Vanderploeg et al., 2001] and buoyant. Samples were preserved with 1% formalin upon collection,
immediately refrigerated, and analyzed within 24 h. FlowCam analyses were performed with a 2X objective
and 1 X 3 mm field of view flow cell with samples diluted as per manufacturer recommendations to avoid
capturing more than one image per trigger event. Fluorescent triggering mode was used to avoid imaging
detrital material that might be confused with Microcystis. Samples were diluted in 0.2 um filtered algal cul-
ture media [e.g., Vanderploeg, et al., 2001] and injected into the FlowCam with a 60 mL syringe, which was
constantly turned over so as to prevent the buoyant colonies from aggregating in the syringe. The image
analysis algorithm was calibrated to identify the colony outline including the mucilage.

2.7. Measurement of Microcystis Colony Buoyant Velocity

Microcystis colony buoyant velocity was measured using microscopic videography [Bundy et al., 1998; Strick-
ler, 1985], a method in principle similar to that of Nakamura et al. [1993]. Surface water samples were col-
lected on 15 and 21 July 2015 (Table 1) at station WE15 (Figure 1b, —83.0, 41.6) during the early afternoon.
Water was placed in 1 L glass bottles in an incubator outdoors with a neutral density filter to cut light inten-
sity to 50% of surface irradiance. Measurements of colony velocities were made throughout the morning
and afternoon of the next day. Digital video clips were captured of individual colonies rising through a 2 cm
X 2 c¢m cross section X 30 c¢m tall glass cuvette filled with ambient lake water inside of a water jacket in a
temperature controlled environmental room maintained at the lake temperature. Image capture and analy-
sis software (Templo Motus, Vicon Motus, Contemplas, GmbH, Germany) was used to measure the velocity
of the rising colonies. Diameters of the colonies were determined from image analysis of video images
using Image-Pro software (Media Cybernetics, Rockville, MD). Water samples were diluted as needed with
0.2 um filtered lake water to avoid turbulence induced by multiple rising colonies.

2.8. Measured Vertical Profiles of Temperature and Cyanobacterial Concentration

Vertical profiles of temperature and cyanobacterial concentration (reported in g chlorophyll a L") were
measured using the FluoroProbe (bbe Moldaenke, GmbH), which uses spectral fluorometry to partition total
chlorophyll into multiple phytoplankton classes on the basis of their characteristic pigments (green algae,
cyanobacteria, diatoms/dinoflagellates, cryptophytes), with correction for possible interference by colored
dissolved organic matter [Catherine et al., 2012; Kring et al., 2014]. Standard factory calibration settings for
representative algal classes were used. Profiles were measured at 11 stations (Figure 1) weekly from June
through September, 2015 (Table 1). Profiles were selected for model skill assessment in which the
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cyanobacterial chlorophyll was greater than chlorophyll from other algal classes, which occurred 13 July to
28 September.

2.9, Satellite Remote Sensing Data

To initialize model simulations, and for model skill assessment, we used a series of images of cyanobacterial
blooms in Lake Erie from July to October 2011 (Table 1) that were derived from the Medium Resolution
Imaging Spectrometer (MERIS) [Wynne and Stumpf, 2015]. MERIS standard level 2 data sets (in units of s
were used with a spectral shape algorithm based around 680 nm [Wynne et al., 2008] to obtain the cyano-
bacterial index (Cl). Cl varies linearly with biomass, with a value of 103 sr ' corresponding to approximately
10° cells mL™" [Stumpf et al., 2012], which is the World Health Organization’s threshold of significantly
increased risk for human health effects [Chorus and Bartram, 1999]. For our analysis, we converted Cl to chloro-
phyll concentration using an empirical relationship derived from field radiometry and grab sample extracted
chlorophyll from eutrophic lakes in Florida (R* 0.95, std. error 7.7 ug L™, range 16 to 115 pug L™ "). The relation-
ship was also verified for satellite-derived Cl, and gave a relative root-mean square error of 27% [Tomlinson
et al, 2016].

Chl=12570 CI+10 (6)

A value of CI =102 sr™ ' is approximately equivalent to 23 ug L' chlorophyll, which we used as a thresh-
old to define the presence of a CHAB.

2.10. Hindcast Simulations

Daily satellite images for the period July to October 2011 were evaluated, and 26 images were selected that
had >50% cloud-free views of western Lake Erie. A 10 day model simulation was initialized from each
image by assigning surface chlorophyll concentration values to FVCOM nodes by nearest neighbor interpo-
lation. Concentration was converted to Lagrangian particles by specifying a chlorophyll mass per particle
(10" pg Chl particle ") and placing the specified number of particles within a control volume. The FVCOM
node-centered tracer control elements were used as control volumes (Figure 1). Vertical layers were speci-
fied as constant-thickness (1 m) z-layers.

Preliminary hindcast skill assessment indicated a need to censor satellite data within a buffer region of
shorelines due to frequent false positives in these areas, which was likely caused by contamination of the
water signal from relatively bright surrounding land or by bottom reflectance. The buffer width was set to
1 km south of Stony Point (41.94°Lat.) and east of Catawba Island (—82.85°Lon.) and to 1.5 km elsewhere.
The buffer was not applied in Maumee Bay because CHABs were often present [Wynne and Stumpf, 2015],
reducing the likelihood of false positives. Buffered or missing data areas were assigned values by nearest
neighbor if pixels containing valid data were available within 2 km. If no valid pixels were available within
2 km of a node one of two approaches was used: (1) it was assumed that no CHAB was present (Ch/ = 0) or
(2) model output was carried forward to fill in the no-data area if a previous model run was available cover-
ing the time period.

Two types of simulations were run, 2-D and 3-D. In 2-D simulations, the surface chlorophyll concentration
was applied to the surface 1 m, with Ch/ = 0 below, and random walk vertical mixing was turned off. In 3-D
simulations, surface chlorophyll concentration was applied over the surface mixed layer (SML) depth (see
below), and random walk vertical mixing was simulated. Both 2-D and 3-D simulations included 3-D
advection.

2.11. Estimation of the Surface Mixed Layer Depth

It was necessary to estimate the surface mixed layer (SML) depth for buoyant Microcystis colonies for the
purpose of initializing the vertical distribution of particles (chlorophyll concentration) in 3-D simulations
from satellite-derived surface chlorophyll concentration. The vertical distribution of buoyant particles in the
water column depends on buoyancy in addition to turbulent diffusivity (e.g., Figures 2d and 2e); therefore,
we used the Lagrangian particle model to estimate the initial vertical distribution of Microcystis colonies
rather than using diffusivity or temperature profiles from FVCOM directly. Initial vertical profiles were simu-
lated at a subset of FVCOM nodes (stations) because a large number of particles is needed to obtain a well-
resolved profile, which would be computationally intensive to simulate at all 6106 nodes. The SML depth
was estimated by running 1-D column vertical random walk simulations at 11 station locations (Figure 1b)
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Figure 2. Time series of (a) temperature and (b) diffusivity profiles output from
FVCOM for 16-31 August 2011 at station WES8. Time series of normalized con-
centration profiles from 1-D vertical random walk simulations without buoyancy
(well-mixed condition test) using (c) the Visser scheme with fixed 1 s time step,
and Visser scheme with variable time step (d) set according to the Visser criteri-
on (equation (5)). (e) A 1-D simulation with buoyancy (N93 3 Aug) using the
Visser scheme and variable time step. Artificial accumulation of particles in a
low diffusivity area with associated depletion in the upper half of the water col-
umn can be seen on 24 August (c), with improved performance from the vari-
able time step (d).

that were selected to provide represen-
tative coverage of the western basin
where CHABs are most common, with
additional stations added at representa-
tive deeper locations. 1-D simulations
were initialized with 1000 particles uni-
formly distributed over the column 36 h
prior to the initialization time of the 3-D
model (satellite image time) to allow the
particle distribution sufficient time to
adapt to the varying diffusivity. Random
walk vertical mixing was forced by hour-
ly diffusivity output from FVCOM. The
SML depth for Microcystis colonies was
estimated as the depth at which the 1-D
concentration profile decreased to half
the surface concentration, and the
satellite-derived surface concentration
was applied from the surface to this
depth; this approach provides an unbi-
ased estimate of the total column bio-
mass for the case of a uniform
concentration profile or a profile that
can be approximated by a linear
decrease. SML depth was interpolated
spatially to the FVCOM nodes by the
nearest neighbor method.

2.12. Model Skill Statistics

Comparison of model results to in situ
profile data was conducted using
column-integrated quantities to mini-
mize the effect of noise in the profile
data on the statistics. Turbulent diffusivi-
ty is strongly influenced by the static
stability of the water column, which can
be quantified using the potential energy
anomaly, ¢,

1" 1 ("
b= | (-pgzaz = 1| piz )
0 0
where p is the local density, h is the
water column depth, and g is accelera-
tion due to gravity [Simpson and Bowers,
1981; Wiles et al., 2006]. Vertical distribu-
tion of concentration was characterized
by calculating the center of mass of the
normalized concentration profile, o,

1 ko K
0m=E;Ck5k§ C= ;Ck (8)

where g=z/h is the normalized vertical
coordinate, ¢ is the concentration at lay-
er k normalized to the column-mean
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concentration, and ki, = 20 is the number of uniformly-spaced o layers in the model grid. The observed con-
centration profile was averaged over the ¢ layers of the model grid for the purpose of comparison to the
model profiles.

Skill assessment in hindcast simulations was conducted by comparing model results to remote sensing
images that were within the model simulation period. Each hindcast simulation was initialized from a satel-
lite image, and two to four subsequent images were typically available within the simulation period for skill
assessment. Skill assessment was conducted using a binary categorical variable (CHAB, no CHAB), and pixel-
by-pixel comparisons of model to remote sensing observations were conducted. FVCOM tracer control ele-
ments (Figure 1) were used as the spatial segmentation (pixels).

Our approach to skill assessment statistics followed Hogan and Mason [2012]. Two statistics were calculated
from the elements of the contingency table, which are the number of g, correctly predicted events (hits); b,
false events (false alarms); ¢, false negatives (misses); and d, correct nonevents. The frequency bias (B) gives
the ratio of the number of forecasts of occurrence to the number of observed occurrences

+
B= atb 9)
atc
and the Pierce skill score (PSS) gives the hit rate minus the false alarm rate.
ad—bc
PSS=—————— 10
(b+d)(a+c) (10)

An unbiased forecast has a frequency bias B = 1.0. PSS values range from —1.0 to 1.0, with positive values
indicating that the hit rate was greater than the false positive rate, and therefore the model had greater skill
than a random forecast or constant CHAB or no-CHAB prediction [Hogan and Mason, 2012].

To provide a reference forecast for skill comparison, we defined a “persistence” forecast as the assumption
of no change from the satellite image that was used to initialize the model, which represents the best avail-
able information to a forecast user in the absence of a useful model. We took the further steps of filling in
missing data in the persistence forecast with the most recent satellite data for each spatial segment, and
applying the same shoreline buffering procedure that was used to initialize the model.

To test whether the model had significantly greater skill than the persistence forecast, we used the boot-
strap method described by Hogan and Mason [2012] to estimate the confidence interval around the differ-
ence in skill score of the model compared to the persistence forecast. Starting with a series of n triplets of
observations, model predictions, and persistence predictions, we created 1000 different bootstrap samples,
each of length n, by taking random samples with replacement from the series. We then calculated the dif-
ference in PSS, APSS, for each bootstrap sample. Finally, we estimated the 95% confidence interval as the
0.025 to 0.975 quantiles of the ensemble of 1000 values of APSS. While analytical formulas are available to
estimate the uncertainty in PSS, the bootstrap method accounts for effects of spatial and temporal autocor-
relation in environmental data, which effectively reduce the number of independent observations to be <n
[Hogan and Mason, 2012].

3. Results and Discussion

Western Lake Erie is polymictic, meaning that it does not continuously stratify during the summer owing to
shallow bathymetry and exposure to wind. Temperature profiles simulated by FVCOM show periods of tem-
porary stratification that are strongest during calm afternoons when the surface is warmed by the sun and
warm summer air (Figure 2a, 19-20 August). At night, cooling of the surface often causes deepening of the
surface mixed layer by convection. This diel cycle can be overpowered by shear-induced mixing during
windy periods (Figure 2a, 21-22 August). The temperature difference over the water column during periods
of stratification is small (Figure 2a), but the static stability is sufficient to cause turbulent diffusivity to vary
by orders of magnitude over a depth range of a few meters (Figure 2b). Random walk turbulence schemes
are susceptible to formation of artificial accumulations of particles in the presence of strong gradients in dif-
fusivity [Visser, 19971.
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a 3.1. Vertical Random Walk Schemes

© We tested the random walk schemes using

s < a 1-D well-mixed condition simulation (see
085 o section 2) that was run using hourly time
b= series of diffusivity profiles output from
T N FVCOM for the month of August 2011 at sta-
- 7 tions representative of the range of condi-

o — tions that occur during the summer CHAB
season in western Lake Erie (Figure 1). The

- b m Variable time step range of conditions represented by the dif-
Q ® Timestep=1s fusivity profiles can be characterized by
g 27 defining a Peclet number that represents
o o the ratio of mixing time scale to floating/
g sinking time scale of the water column,
s 7 Pe= wyh/K, where h is the water column
o - depth and K is the column-mean eddy dif-

fusivity [Ross and Sharples, 2004]. Values of
Pe > 1 indicate that wy, has a strong influ-
ence on particle concentration profiles.
Combining the time series of diffusivity pro-
files that was used in the well-mixed condi-
tion simulations with wp, =70 pm s~ (see
Numerical scheme below), values ranged on the order of

0.01 < Pe < 100. A small time step is usually
Flgure.3. Performance compan‘son ofthe five vertical random. walk' required for Pe < 1 because small h and
numerical schemes and the variable time step scheme. One-dimensional _ X . .
vertical mixing simulations with 1000 particles were conducted for the Iarge K will prOduce strong gradlents in dif-
month of August 2011, at the six stations indicated in Figure 1. (a) Total fusivity for realistic diffusivity profiles (i.e., K
run t|me' for the ?|x simulations. (b) Percent occurrence o.f fallLfre .to meet ~ 0 at the bottom or at the thermocline),
the quality criterion out of 4464 hourly records. The quality criterion was a .
signal to noise ratio >5 where the signal was simulated normalized sur- and therefore, small values of the Visser

face concentration with buoyancy (N93 3 Aug) and the noise was absolute time step criterion (equation (5)). At the3 m
dgwauon ofthe normal{zed surface concentration fro.m 10ina weII—. deep station (WE6), the variable time step
mixed condition test (without buoyancy). Concentration was normalized . v ;
to the mean column concentration. occasionally was limited by the specified

minimum and maximum values of 0.01 and
600 s, with typical hourly means of 0.2-3 s. At the 13-m deep station (NDBC45005) in the central basin,
the water column was continuously stratified, and longer time steps could be used; hourly minimum val-
ues of the variable time step were typically 0.2-2 s, mean values were 3-30 s and maximum hourly values

were constrained by the upper limit of 600 s.

PC2
S1.5

—
(0]
[}

£

>

Grawe Milstein
Milstein

Example time series of concentration profiles output from a well-mixed condition simulation are shown in Fig-
ure 2. A typical particle accumulation artifact is visible in Figure 2c, where the normalized concentration devi-
ated from the expected constant value of unity. The artifact formed when high diffusivity in the surface mixed
layer on 24 August (Figure 2b) caused particles to jump across the sharp diffusivity gradient into the area of
low diffusivity in the lower half of the water column without the opportunity for the gradient term (equations
(3) and (4)) to push the particles back toward the high diffusivity SML. Improved performance can be seen in
Figure 2d, where the variable time step was reduced during the high diffusivity event on 24 August, thereby
limiting the maximum particle displacements and reducing the magnitude of the artifact.

The Grawe Milstein scheme [Grawe, 2011] with the variable time step provided the best combination of
computational efficiency and accuracy of the random-walk numerical schemes tested. The shortest run
time was achieved by the Grawe Milstein scheme (Figure 3a), which was unique in the use of linear
interpolation of diffusivity to the particle position, while the other schemes used cubic splines at a
greater computational cost. The second-order schemes, PC2 and S1.5, required greater computational
effort to calculate additional terms and had the longest run times. The run time of the variable time
step simulation was similar to that of the fixed 1 s time step for the Visser and Milstein schemes because
the average of the variable time step was similar to the value of the fixed 1 s time step (Figure 3a). The
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Figure 4. (a) Histogram of Microcystis colony size distribution for samples col-
lected in Lake Erie in 2013 and 2014. (b) Microcystis colony buoyant velocity for
samples collected in Lake Erie on 15 and 21 July 2015, and data digitized from
Nakamura et al. [1993, their Figure 3]. (c) Histogram of Microcystis colony buoy-
ant velocity resulting from application of the regression lines in Figure 2b to the
2015 size distribution in Figure 2a.

Milstein  schemes showed improved
accuracy compared to the Visser scheme
with the fixed 1 s time step (Figure 3b),
consistent with the finding of Grawe
[2011]. All schemes were more accurate
with the variable time step than with the
fixed 1 s time step (Figure 3b) because
the Visser time step criterion (equation
(5)) was always satisfied in the case of
the variable time step. The second-order
schemes did not offer sufficiently
improved accuracy to compensate for
their greater computational effort (Fig-
ures 3a and 3b).

In contrast to our result, Grawe [2011]
found that the second-order schemes
did offer improved accuracy that justi-
fied the additional computational effort,
but for the case of idealized diffusivity
profiles specified at high vertical resolu-
tion and for a realistic test case of a
tidally-mixed bay with model diffusivity
output at 200 levels. In our case of a
shallow polymictic lake, diffusivity pro-
files were highly irregular with sharp
gradients (Figure 2b), and diffusivity was
output at only 20 levels. We found that
spline fits often had spurious features
between the levels at which diffusivity
was specified by FVCOM that were not
representative of physically realistic dif-
fusivity profiles. Higher order random
walk schemes depend on higher order
derivative terms from the spline fits to
the diffusivity profiles [Grawe, 2011],
which may not be accurate in the case
of a nonrepresentative spline fit. The
higher order schemes might produce
better results if we were to output diffu-
sivity at a large number of levels, but
that would come at the expense of
greater computational effort in the
hydrodynamic model. For our applica-
tion, the Grawe Milstein scheme pro-
duced satisfactory results and did not
require a spline fit, so it was selected for
further work.

3.2. Microcystis Colony Size
Distribution and Buoyant Velocity
The parameter wy, represents the Micro-
cystis colony terminal velocity resulting
from the balance of forces between
buoyancy and fluid drag. Our approach
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3,is given above the temperature profiles.

was to specify a Microcystis colony size distribution, then apply an empirical relationship between wy,
and colony diameter to obtain a frequency distribution of w, for use in the model. According to Stoke’s
law for the terminal velocity of a floating/sinking spherical particle in a fluid, one might expect the rela-
tionship between w,, and colony diameter to give a straight line on a log-log plot with a slope of 2. How-
ever, Nakamura et al. [1993] showed that Microcystis colony specific gravity approaches that of the
surrounding fluid as colony diameter increases owing to the fractal geometry of the colonies and the
increasing volume of void spaces filled with the surrounding water; the result is that the slope of the
log-log plot is <2.

The Microcystis colony diameter frequency distribution measured by FlowCam was unimodal with a median
of 117 um and a maximum of 740 um (Figure 4a, Station WE12, 4 August 2014). The size frequency distribu-
tion measured by microscopy on samples collected at stations WE 2, 4, 6, and 8 in July to October 2013 and
June to July 2014 gave a similar size distribution to that of the 4 August 2014 sample (Figure 4a). It is likely
that the colony size distribution varies to some extent spatially and temporally [e.g., Lin et al., 2014], and our
estimate could be refined through additional measurements. Even so, the consistency between our two
estimated size distributions gives some indication of representativeness.

Our measured values of Lake Erie Microcystis colony buoyant velocity, wy,, were similar to those of Nakamura
et al. [1993] for colonies larger than 200 um in their sample collected from a lake in Japan on 3 August
1990, and generally less than their 18 September sample (Figure 4b). We were not able to resolve colonies
smaller than 200 um by our method; however, large colonies account for the majority of biomass and toxin
concentration. For example, colonies > 112 um accounted for 93% of Microcystis cells (biomass) in Lake Erie
samples [Chaffin et al, 2011], and colonies >100 pum showed the highest proportion of microcystin-
producing genotypes, highest microcystin cell quotas, and highest microcystin production rate, compared
to smaller colony size classes in Lake Wannsee, Germany [Kurmayer et al., 2003]. In addition to colony size,
Microcystis buoyancy is a function of Microcystis strain and light exposure history, as it affects gas vacuole
and carbohydrate content of the cells [Ibelings et al., 1991; Xiao et al., 2012]. Further research is necessary to
define buoyant velocities over a wide size range of Lake Erie Microcystis under a variety of environmental
conditions. Our results, while limited in size range, do show similarity between the >200 pm values of
Nakamura et al. [1993] and samples from two different dates in Lake Erie, and support using the lower esti-
mate of buoyancy (Figure 4b, N93 3 Aug) from Nakamura et al. [1993].
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For the model simulations, we assigned
buoyant velocities to Lagrangian particles
by random sampling with replacement
from the frequency distributions shown in
Figure 4c, which were obtained by apply-
ing the regression lines (Figure 4b) from
the data of Nakamura et al. [1993] to the
diameter frequency distribution from the
8 August 2014 sample from Lake Erie (Fig-
ure 4a). We tested the sensitivity of 1-D
model simulations to the two buoyant
—— Observed velocity frequency distributions shown in
--- N93 3 Aug Figure 2¢c, and refer to these hereafter as

N93 18 Sep “N93 3 Aug” and “N93 18 Sep”. Example
T T I T T T time series of concentration profiles simu-
-07 -06 -05 -04 -03 -02 lated with the low estimate of buoyancy
(N93 3 Aug) are shown in Figure 2e.

1.0

0.8

0.6

Cumulative frequency

0.2

Center of mass, o
3.3. Vertical Profiles of Cyanobacterial

-- Concentration and Temperature

We tested the ability of the random-walk
model with buoyancy to simulate realistic
Microcystis concentration profiles by com-
paring measured profiles of cyanobacterial
chlorophyll concentration from Lake Erie
(predominantly Microcystis) to correspond-
ing 1-D simulations. On 20 July, the concen-
tration profile showed strong accumulation
within the surface two meters (Figure 5a),
which corresponded to a surface mixed lay-
er defined by a thermocline at 2 m depth
—— Observed (Figure 5b). A second profile was measured
---- FVCOM on 9 September, which showed concentra-
I I I I I I tion enrichment within a 3 m thick surface
0 1 2 3 4 5 mixed layer (Figure 5c), which was similarly

Potential energy anomaly, J m=2 defined by a thermocline at 3 m depth
(Figure 5d).
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Figure 6. Cumulative frequency distributions of simulated and observed (a) .
center of mass of the normalized cyanobacteria concentration profile, and The temperature difference across the ther-
(b) potential energy anomaly of the temperature profile for 69 profiles col- mocline in both cases was only about 1°C

lected in July to September of 2015 at stations indicated in Figure 1. (Figures 5b and 5d), but the FVCOM simula-

tions indicated that such subtle stratifica-
tion features can have a strong influence on diffusivity (e.g., Figures 2a and 2b). The accuracy of
temperature simulations in hydrodynamic models is often only within a few degrees, which brings into
question whether the subtle stratification features that are influencing the Microcystis vertical distribution
can be reasonably simulated by a hydrodynamic model. Even though the simulated temperature profiles
have a warm bias of 1-2°C, at these locations and times, they show thermoclines at multiple levels that are
similar to the observed profiles (Figures 5b and 5d). The deeper thermocline may have formed due to con-
vective deepening of the SML overnight, followed by surface warming during the day that produced the
shallower thermocline; the profiles were captured in the afternoon. It is the static stability of the profile rath-
er than the absolute temperature that is important in simulation of the diffusivity, and the static stability of
the simulated and observed profiles is in reasonable agreement (Figures 5b and 5d). Over the full set of 69
profiles, the frequency distribution of static stability simulated by FVCOM was in reasonable agreement
with the observed frequency distribution, although the model was biased slightly less stable than the obser-
vations (Figure 6b and Table 2).
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Satellite

Table 2. Statistics Evaluating the Skill of the Lagrangian Par-
ticle Model in Simulating the Vertical Distribution of Cyano-
bacterial Chlorophyll Concentration (Center of Mass of the
Normalized Concentration Profile) and of FVCOM in Simulat-

ing Temperature Profiles (Potential Energy Anomaly)?

Bias RMSD r
Center of mass, N93 18 Sep, & 0.04 0.09 0.56
Center of mass, N93 3 Aug, —0.01 0.08 0.53
Potential energy anomaly, Jm > —0.20 0.72 0.83

“The statistics are the mean bias, root mean square devia-

tion (RMSD), and Pearson correlation coefficient (r).

Simulated normalized concentration profiles of buoy-
ant particles showed enrichment within the surface
mixed layer, similar to the observed profiles (Figures
5a and 5c¢). We calculated the center of mass, o, of
the concentration profile as a column-integrated indi-
cator of the vertical distribution of concentration (hori-
zontal lines in Figures 5a and 5c¢). Concentration was
weighted toward the surface (6., > —0.5) in > 80% of
the observed profiles (Figure 6a), which is consistent
with the assumption to treat Microcystis colonies as
buoyant particles in the model.

We selected the lower estimate of buoyancy (N93 3 Aug) for use in the hindcast simulations. The simulated
frequency distribution of &, was in reasonable agreement with the observed distribution for both the low
and high estimates of w,,, although the low estimate was closer to the observations (Figure 6a and Table 2).
Similarly, the direct measurements of wy, also indicated better agreement with the lower estimate of buoy-

ancy (Figure 4b).
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Figure 7. Comparison of 2-D and 3-D hindcast simulations initialized from satellite-derived cyanobacterial chlorophyll concentration (a) on 6 August 2011. (d, g) Subsequent satellite

images were used for model skill assessment. Gray color indicates missing data. Wind speed, averaged over the preceding 12 h, was <5 m s~ ' on 6 August and increased to 5-10 m s~

]

on 7 and 15 August (wind barbs a, d, g). In the 2-D simulation, particles were initiated in the surface 1 m and vertical mixing was not simulated (advection only). In the 3-D simulation,
particles were initialized over the surface mixed layer, as determined by preliminary simulations of 1-D mixing with buoyancy, and the model was run with 3-D advection in addition to
vertical mixing with buoyancy. While both 2-D and 3-D models simulated CHAB advection toward Port Clinton observed on 15 August, the 3-D model better simulated reduced intensity
and coverage observed on 7 and 15August due to higher winds, and continued CHAB coverage near Toledo and Monroe on 15 August.

ROWE ET AL.

MICROCYSTIS VERTICAL DISTRIBUTION 5309



@AGU Journal of Geophysical Research: Oceans 10.1002/2016JC011720

Satellite 2D model 3D model
a
Amherstburg Amherstburg Amherstburg
g Leamington @ Leamington @ . Leamington @
|
e}
(ID 100
~—
~—
o
N
80
T
-
Ambherstburg Ambherstburg ’ a Ambherstburg g - 60
N Leamington @ Leamington @ Leamington @
7 B i
()] —
>
? £
h ]
o
o o F 40
N e
O
g h 30
Ambherstburg Amherstburg Ambherstburg
8 _ Leamington @ Leamington @ Leamington @
| >
(o2}
? 23
~—
~—
o
N
0

Figure 8. Comparison of 2-D and 3-D hindcast simulations initialized from satellite-derived cyanobacterial chlorophyll concentration (a) on 29 August 2011. Symbols and model setup
are explained in Figure 7. While both 2-D and 3-D models simulated CHAB advection east of Leamington into the central basin observed on 3 September, the 3-D model better simulated
CHAB intensity and extent in the western basin observed on 3 September. Wind speed was <5 m s~ ' during the simulation period, but was north at 10 m s~ until 12 h prior to the

initial image.

3.4. Hindcast Simulations of CHAB Intensity and Distribution

Having shown that 1-D random walk simulations reasonably approximated the changing vertical distribu-
tions of buoyant Microcystis colonies in response to varying turbulence, we went on to test whether inclu-
sion of this mechanism in the forecast model improved model skill. Hindcast simulations were initiated
from each of the 26 quality satellite images of CHAB distribution for the 2011 CHAB season.

In one example, a hindcast simulation was initialized on 6 August, which was a calm day (wind <5 m s~ ")
with an intense CHAB event throughout the central western basin (Figure 7a). On the following day, wind
increased (5-10 m s~ '), and a second satellite image indicated reduced surface CHAB intensity and distribu-
tion (Figure 7d). The 3-D simulation captured the reduced surface CHAB intensity on 7 August, while the 2-
D model did not, which can be seen qualitatively by comparing Figures 7e and 7f, and was indicated quanti-
tatively by reduced frequency bias (B) of the 3-D simulation compared to the 2-D simulation (3-D B = 1.10;
2-D B = 1.34). On day 9 (15 August), the simulated CHAB distribution was distinctly different between the 2-
D and 3-D models (Figures 7h and 7i). In comparison to the 2-D model, the 3-D model CHAB distribution
was more similar to the observed distribution (3-D PSS = 0.56; 2-D PSS = 0.41), having less CHAB coverage
in the central basin east of Sandusky and more continuous coverage along the coast from Monroe to Tole-
do. Both 2-D and 3-D models simulated the advection of CHAB to Port Clinton (Figures 7b, 7c and 7h, 7i),
which was minimally affected by CHAB on 6 August and fully covered on 15 August (Figures 7a and 79).
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Figure 9. Skill-bias plots for the 2-D model (advection only), 3-D model (advec-
tion, vertical mixing, and buoyancy), and persistence forecasts for the 2011
hindcast simulations. The plot symbol indicates the simulation day (0 = initial,
x = day 10). Pierce skill score (PSS) is the hit rate minus the false detection rate,
and frequency bias (B) is the ratio of forecast hits to observed hits. Positive PSS
indicates greater skill than a random forecast. Frequency bias of 1.0 indicates
the same number of CHAB pixels were predicted as observed.

In a second example, a hindcast simula-
tion was initialized on 29 August, which
was a date with only partial coverage by
the satellite image, leaving no data over
much of the western basin (Figure 8a).
Output from a previous model run was
used to initialize the CHAB distribution
in the western basin (Figures 8b and 8c).
On simulation day four (2 September) a
second partial satellite image indicated
extensive CHAB coverage in the western
basin (Figure 8d), consistent with both
models. Both 2-D and 3-D models
underestimated the CHAB coverage,
although the 3-D model better matched
the observed coverage (2-D B=0.81,
PSS = 0.76; 3-D B = 0.90, PSS = 0.84; Fig-
ures 8d, 8e, and 8f). The partial image
on 2 September did not show the exten-
sive CHAB outbreak into the central
basin east of Leamington, Ontario,
although it was simulated by both 2-D
and 3-D models (Figures 8e and 8f), and
was revealed the following day in the 3
September satellite image (Figure 8g).
The 3-D model better simulated the
CHAB distribution on simulation day 5
(3 September) than the 2-D model (2-D
B=0.79, PSS=068 3-D B=0.99,
PSS = 0.80; Figures 8g, 8h, and 8i).

The examples in Figures 7 and 8 show,
that both 2-D and 3-D models capture
some observed events that may be
attributed to advection, but the 3-D
model performed better in several
cases. The 3-D model is initialized with a
better estimate of total biomass than
the 2-D model because an estimate of
the surface mixed layer depth for buoy-
ant Microcystis colonies is used to assign
the depth over which the satellite-
derived surface concentration is applied.
In addition, the 3-D model is able to sim-
ulate changing surface concentration in

response to changing mixed layer depth. Finally, the 3-D model produced different final CHAB spatial distri-
bution than the 2-D model, which likely results from the more accurate vertical distribution within a com-

plex 3-D flow field.

3.5. Summary of Hindcast Skill Statistics

Skill statistics were summarized by simulation day to evaluate how long the model can be run from initiali-
zation before skill begins to decline. The Pierce skill score (PSS) gave positive values for the 2-D model, 3-D
model, and the persistence forecast on simulation days 1-10 (Figure 9). Positive values of PSS indicate that
the hit rate was greater than the false positive rate, and therefore the model had greater skill than a random
forecast or constant CHAB or no-CHAB prediction [Hogan and Mason, 2012]. The frequency bias was less
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Figure 10. Pierce skill score (PSS) of the model minus PSS of the persistence
forecast. Positive values indicate greater skill for the model than for the per-
sistence forecast. Error bars indicate the 95% bootstrap confidence interval
on the difference in PSS for the 26 hindcast simulations from the 2011
CHAB season, grouped into two-day intervals. The 3-D model (including ver-

than 1.0 on 8 of 10 forecast days, indicating
that both models had an overall bias
toward under-prediction, although not
consistently so (Figures 9a and 9b). The
95% confidence intervals on the difference
in PSS indicated that the 3-D model dis-
played significantly greater skill in the hind-
cast simulations than the persistence
forecast through simulation day 6, and was
not significantly worse than the persistence
forecast through day 10 (Figure 10). The 3-
D model had significantly greater skill than
the 2-D model over the full simulation peri-
od. The 2-D model had significantly less
skill than the persistence forecast on all
simulation days (Figure 10).

It may be surprising that the persistence
forecast displayed a reasonable level of
skill. This can be explained in that the spa-
tial distribution of CHABs in Lake Erie has a
number of persistent features. For example
CHABs often persist in the southern and
western portions of the western basin,

tical mixing with buoyancy) had greater skill than the 2-D model (advection
only) and greater skill than the persistence forecast through day 6 and com-
parable skill out to day 10.

while they are rarely present in the Detroit
River plume and in the central basin east of
the islands, as indicated by 13 years of Lake
Erie CHAB spatial patterns compiled by Wynne and Stumpf [2015]. The model does not necessarily preserve
these persistent features. For example, CHABs may be erroneously flushed from Maumee Bay in long simu-
lations, although this happened to a lesser extent in the 3-D model than in the 2-D model (Figures 7g, 7h,
and 7i). The skill of the persistence forecast indicates that the most recent satellite image is a reasonable
indication of the CHAB distribution for several days after.

Skill statistics based on pixel-by-pixel comparisons, and use of a persistence forecast as a benchmark, pro-
vide a useful point of comparison among models, but do not capture all aspects of model performance. For
example, the large simulated plume that extended into the central basin on 3 September (Figures 8g, 8h,
and 8i) does not exactly match the observed plume in terms of shape and position. This pattern mismatch
detracted from pixel-by-pixel skill statistics, but both models provided information regarding the existence
of this transport event before it could be seen in satellite imagery; information that would be useful to fore-
cast users even if the shape of the plume is not entirely accurate. A persistence forecast can score reason-
ably well in skill statistics that compare spatial patterns, but cannot provide any information on likely
transport trajectories. Therefore, even though the 2-D model had less skill than the persistence forecast (Fig-
ure 10), this does not indicate that the 2-D model has no value because it may provide useful information
on likely transport trajectories. It is a challenge to formulate skill statistics that test for accuracy in simulation
of transport events, largely because it is difficult to identify and quantify transport events by comparing
among subsequent satellite images. Wynne et al. [2011] attempted to calculate skill statistics based on
movement of the bloom centroid; however, this approach is likely to work only for special cases because
accurate calculation of the bloom centroid is sensitive to missing data (cloud cover) and the bloom often
consists of multiple patches that may move in different directions rather than one distinct patch. Formula-
tion of appropriate skill statistics for CHAB forecasts is an area for further work.

3.6. Ecological Significance

Aside from the specific application of CHAB forecasting, the observations and simulations shown here pro-
vide interesting insights on the physical processes that influence phytoplankton ecology in a polymictic
lake. Previous studies of Lake Erie circulation and thermal structure considered the western basin to be
largely unstratified [e.g., Beletsky et al., 2013], but our study highlighted the importance of fine-scale thermal

ROWE ET AL.

MICROCYSTIS VERTICAL DISTRIBUTION 5312



@AGU Journal of Geophysical Research: Oceans

10.1002/2016JC011720

Acknowledgments

M.D. Rowe received funding from the
Great Lakes Restoration Initiative
through the U.S. Environmental
Protection Agency and National
Oceanic and Atmospheric
Administration. The FVCOM model and
Lagrangian particle tracking model
code are available from http://fvcom.
smast.umassd.edu/. David Schwab,
University of Michigan, modified the
Lagrangian code for improved
efficiency. Duane Gossiaux, NOAA
GLERL, measured colony size
distributions by microscopy. Danna
Palladino and Ashley Burtner, CILER,
collected field samples from Lake Erie
in 2012, 2013, and 2014. We are
grateful to UIf Grawe, Leibniz Institute
for Baltic Sea Research, for providing
code for alternative random walk
numerical schemes. Data and model
results are available upon request from
the corresponding author (mark.
rowe@noaa.gov). This is GLERL
contribution 1825.

structure in the western basin in a biological context. Surface mixed layer depth varies hour by hour due to
subtle features in the temperature profile caused by the diel cycle of surface heating and cooling, further
modified by varying wind stress. Colony buoyancy is sufficient to keep Microcystis concentrated within the
constantly changing surface mixed layer depth. The thermal structure is subtle in comparison to the contin-
uous seasonal stratification that occurs in deeper lakes, and in the central and eastern basins of Lake Erie,
but important nonetheless to the Microcystis vertical distribution. The position of Microcystis colonies in the
water column is critical to their light exposure, nutrient acquisition, and ultimately to their ability to domi-
nate the phytoplankton community, and produce toxic blooms.
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