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ABSTRACT

The Rapid Refresh (RAP) and High-Resolution Rapid Refresh (HRRR), both operational at NOAA’s

National Centers for Environmental Prediction (NCEP) use the Thompson et al. mixed-phase bulk cloud

microphysics scheme. This scheme permits predicted surface precipitation to simultaneously consist of rain,

snow, and graupel at the same location under certain conditions. Here, the explicit precipitation-type di-

agnostic method is described as used in conjunction with the Thompson et al. scheme in the RAP and HRRR

models. The postprocessing logic combines the explicitly predicted multispecies hydrometeor data and other

information from the model forecasts to produce fields of surface precipitation type that distinguish between

rain and freezing rain, and to also portray areas of mixed precipitation. This explicit precipitation-type di-

agnostic method is used with the NOAA operational RAP and HRRRmodels. Verification from two winter

seasons from 2013 to 2015 is provided against METAR surface observations. An example of this product

from a January 2015 south-central United States winter storm is also shown.

1. Introduction

Diagnosis of precipitation type from weather forecast

model predictions is important for public forecasting

of winter storms, and also for air and surface trans-

portation, energy, hydrology, and other applications.

The advent of mixed-phase bulk microphysics schemes

in some NOAA operational numerical prediction models

[Rapid Update Cycle (RUC; Benjamin et al. 2004a,b);

Rapid Refresh (RAP; Benjamin et al. 2016); and High-

Resolution Rapid Refresh (HRRR; Smith et al. 2008;

Benjamin et al. 2016)] enabled a relatively direct diagnosis

of precipitation type [e.g., rain R, snow S, ice pellets (IP),

freezing rain and drizzle (FZ), and mixed types] at the

surface. Since 1998, the RUC model running at NOAA’s

National Centers for Environmental Prediction (NCEP)

has used a bulk scheme in which separate mixing ratios

for cloud water, rainwater, ice, snow, and graupel are

predicted at each 3D grid point. From 2005 to 2012, the

scheme used inRUCwas as described byThompson et al.

(2004). The RAP, which replaced the RUC at NCEP on

1 May 2012, uses a more advanced version (Thompson

et al. 2008). RAP, version 3, and HRRR, version 2,

planned for implementation at NCEP in 2016 and run-

ning at Earth System Research Laboratory (ESRL)

starting in April 2015 (Benjamin et al. 2016, their Table

1), use an aerosol-aware version of the Thompson et al.

scheme (Thompson and Eidhammer 2014). This use of

multispecies mixed-phase microphysics in the RUC, RAP,

and HRRR models was motivated by a need to improve

the forecast skill for clouds, in general, and supercooled

liquid water, in particular, for aviation requirements.

Here, we describe the diagnostic precipitation-type scheme

used in the NCEPRAP, version 3, andHRRR, version 2.

This precipitation-type scheme is a recent alternative to

profile-based diagnostic methods summarized in section

2. Ikeda et al. (2013) presented verification results on

precipitation-type forecasts from an earlier version of

HRRR as of 2012. This paper is an expansion on and

correction of their Table 1 and includes an examination of

more recent explicit precipitation-type results.

The RAP and HRRR models use the community

NCEPUnified Post Processor (UPP) also used for other

models. Options have been added to UPP including
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ceiling (cloud-base height), visibility, and precipitation

type, designed for microphysics schemes with multiple

prognostic hydrometeor-species variables. In this paper,

we describe the UPP option for this explicit, multispe-

cies diagnostic of precipitation type, which is currently

applied only in the RAP and HRRR.

2. Other precipitation-type diagnostic schemes

Well before the introduction of mixed-phase micro-

physics schemes into some operational numerical

weather prediction models, successful diagnostic tech-

niques were designed using implicit assumptions about

microphysical processes to allow estimation of the pre-

cipitation type. These procedures can be grouped into 1)

algorithmic or decision-tree approaches based on an

observed or predicted sounding and 2) statistical pro-

cedures that make use of a training dataset to derive a

set of equations that is then applied to predicted fields.

All of the diagnostic schemes discussed here are for

discrete yes/no identification of each precipitation type,

the same yes or no designation in observer guidelines in

the NOAA Federal Meteorological Handbook No. 1

(OFCM 2005, chapter 8).

a. Algorithmic approaches

A number of simple but effective algorithms have

been developed that use as input model-forecast profiles

of temperature and relative humidity from the surface

upward to the level of assumed precipitation-generating

layers aloft. The algorithms used most often by fore-

casters in North America are those developed by Ramer

(1993) and Baldwin et al. (1994). A description of

Ramer’s algorithm can be found in Bourgouin (2000),

Wandishin et al. (2005), and DeGaetano et al. (2008).

(The latter paper introduces some modifications to

Ramer’s algorithm for application to forecasts of ice

accretion.) In essence, Ramer’s approach is to define an

ice fraction of the precipitation in a precipitation-

generation layer and, based on the temperature of that

layer, assume the ice fraction of this precipitation is ei-

ther 0 (liquid) or 1 (frozen). Then, for the frozen case, a

decision tree that depends on the wet-bulb temperature

profile is used to modify the ice fraction as a function of

height between the base of the generating layer and the

ground. The value of the ice fraction then determines

the precipitation type.

The Baldwin et al. algorithm also considers the ver-

tical profile of the wet-bulb temperature below satu-

rated layers where precipitation is presumed to form. If

this precipitation is presumed frozen, the precipitation

type at the surface is obtained by using the vertically

integrated departure of the wet-bulb temperature from

08C in various layers and the temperature in the lowest

model layer. A more complete description can be found

in Bourgouin (2000) and Wandishin et al. (2005).

b. Statistical approaches

Among statistical approaches of which we are aware,

the earliest to use upper-air data is that of Wagner

(1957). Using surface aviation observations of pre-

cipitation type and collocated rawinsonde observations

(about 40 stations), Wagner compared the thickness of

the 1000–500-hPa layer to the occurrence of frozen

precipitation and determined the thickness values cor-

responding to a 50% probability of frozen precipitation.

The thickness values so obtained are still used by many

forecasters as a point of comparison with predicted

thickness values.

The model output statistics (MOS) approach for

precipitation type was first applied by Bocchieri (1979,

1980) and Bocchieri and Maglaras (1983) to the then-

operational Limited Area Fine Mesh (LFM) model.

Since then, there have been many upgrades, andMOS is

now applied to output from the Global Forecast System

(GFS) as well as the North American Mesoscale Fore-

cast System (NAM) models for precipitation-type pur-

poses. Perfect-prog (Vislocky andYoung 1989) approaches

include Keeter and Cline (1991) and Bourgouin (2000).

Keeter and Cline used radiosonde 1000–700-, 1000–850-,

and 850–700-hPa thickness values at Raleigh–Durham,

North Carolina, regressed against collocated surface ob-

servations. The approach of Bourgouin (2000) classified

sounding temperature profiles into four groupings (freezing

rain or ice pellets, ice pellets or rain, snow or rain, and

snow) and derived statistics separately for each grouping.

Separate positive and negative areas on a thermodynamic

diagram between the 08C isotherm and the observed

temperature profile are computed for each sounding in

the training dataset and are determined to be impor-

tant predictors. Bourgouin considers his approachmost

applicable to synoptic situations characterized by

broad synoptic-scale lift leading to widespread, deep

saturation. Manikin (2005) combined the Baldwin et al.,

Ramer, Bourgouin, and revised Baldwin et al. algorithms

into a single predominant precipitation-type value now

used often in NCEP models (http://www.wpc.ncep.

noaa.gov/wwd/impactgraphics/).

A recent contribution by Schuur et al. (2012) shares

conceptual aspects with the earlier algorithmic ap-

proaches as well as that of Bourgouin in that it classifies

vertical profiles (modeled or observed) according to the

number of 08C crossings by the wet-bulb vertical tem-

perature profile together with the 2-m temperature.

This method considers local extrema of this profile be-

tween the intermediate 08C crossings. This algorithmic
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approach could stand alone but is intended for use in

conjunction with polarimetric radar, in which the radar

polarimetric parameters indicate whether a bright band

(i.e., a melting layer) exists. If such a layer is detected,

then the precipitation type at the ground is expected to

be rain, freezing rain, ice pellets, or a mixture of freezing

rain and ice pellets, or possibly even wet (melting) snow

if the melting level is detected at the lowest elevation

scan, but not dry snow.

3. Explicit diagnostic scheme for precipitation type

In the postprocessing algorithm described here, sep-

arate yes/no indicators are diagnosed for each of four

different precipitation-type categories: rain, snow, ice

pellets (including graupel), and freezing rain. These yes/

no indicators are determined from the explicit 3D hydro-

meteor mixing ratios reaching the ground as calculated

in the cloud microphysics parameterization (Thompson

et al. 2008; Thompson andEidhammer 2014) in theRAP

or HRRR models [or from the Thompson et al. (2004)

scheme in the RUC model]. The hydrometeor fields

predicted by the Thompson et al. schemes are mixing

ratios of cloud water (droplets), rain, cloud ice, snow,

and graupel, as well as the number concentration of

raindrops and cloud-ice particles.1 These hydrometeor

mixing ratio prognostic fields undergo horizontal

transport as well as vertical transport at appropriate fall

speeds. The precipitation-type diagnostic algorithm de-

scribed here makes use of the explicit precipitation of

rain, snow, and graupel predicted to reach the surface by

FIG. 1. Flowchart describing the diagnostic logic for determination of precipitation type where Ptot, Ptot-rs, and Psnow are the total,

rain plus snow only (no graupel), and snow only (water equivalent) precipitation, respectively, with 1 h indicating over the last hour. The

instantaneous fall rate for different hydrometeor types is given by Prate where the subscript indicates the type of hydrometeor. The max

rain mixing ratio in the column is represented by Max(qr).

1 The number concentration of cloud water drops is also pre-

dicted in the Thompson–Eidhammer aerosol-aware scheme but is

not used in the precipitation identification described here.
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the model. Using continuous model-provided explicit

fields of hydrometeor mixing ratios and fall rates (mass

accumulation at ground per unit time), this algorithm

estimates thresholds for these parameters to approxi-

mate the same discrete yes/no observer guidelines in the

NOAA Federal Meteorological Handbook No. 1

(OFCM 2005, chapter 8).

The explicit precipitation-type scheme described here

depends on the microphysics scheme to provide a ‘‘first

guess’’ of precipitation types reaching the ground. (Note

that because rain, snow, and graupel are each predicted

separately by the forecast model, i.e., each possessing

separate mixing ratios and fall speeds, it is possible for

the model to predict that two or more of these types will

reach a given point on the ground simultaneously.) For

each allowable precipitation type in this diagnostic

scheme (rain, snow, ice pellets, and freezing rain), the

model output within each grid column (not just at the

surface) is used to derive a separate yes/no (1/0) decision

on whether that type is reaching the ground. These

precipitation-type values from the postprocessing are

not mutually exclusive, except for rain versus freezing

rain. More than one value (as many as three) can be yes

(1) at a given grid point at a given time.

a. Diagnostic logic flowchart for precipitation types

The sequence of the diagnostic logic is depicted

completely in the flowchart in Fig. 1, with further dis-

cussion below. The rationale for this scheme is provided

in the following subsection. Each model grid column is

considered separately, and all precipitation rates below

are at the ground and in liquid-water equivalent. After

determining if there was even a minimal amount of

precipitation during the last hour (including that from

parameterized convection, if appropriate, using 08C as a

snow/rain threshold), the explicit precipitation-type di-

agnosis logic is treated for three decisions: rain versus

freezing rain/drizzle, snow versus rain, and ice pellets

versus rain or snow. Each treatment allows consid-

eration of instantaneous precipitation (via fall rates

for rain, snow, or graupel) and precipitation over the

last hour.

Some of the precipitation-type rules are based on a

snow fraction (SF) defined as the mass of snow accu-

mulation divided by the combined mass of snow and

rain. The snow fraction is calculated at each grid point

for accumulation over some previous forecast period.

These precipitation accumulations are updated each

time step from the near-surface mixing ratio times the

fall speed, as described in Thompson et al. (2008) and

Thompson and Eidhammer (2014). In the RAP and

HRRR, the previous forecast period is currently 1 h but

can be set to shorter time periods (e.g., 15min).

FIG. 2. Precipitation type [snow (blue horizontal hatched lines),

rain (green vertical hatched lines), freezing rain (red sloping up-

ward to right hatched lines), and ice pellets (lavender sloping

downward to right hatched lines)] from a 1-h forecast from an

experimental version of the RAP using the explicit diagnostic

method. The RAP 1-h forecast is valid at 1600 UTC 1 Jan 2015 and

was initialized at 1500 UTC, 1 h earlier. Note that precipitation

type is indicated for areas with 1-h precipitation (water equivalent)

less than 0.01 in. (0.25mm) because precipitation type can be di-

agnosed with 1-h precipitation as low as 0.0001mm. Circles shown

are for major airports. (a) Results are given without total 1-h

precipitation. (b) Results are given with total 1-h precipitation (in.;

water equivalent).

612 WEATHER AND FORECAST ING VOLUME 31



1) SNOW VERSUS RAIN

If SF. 0.25 and either the current snow precipitation

rate is .0.000 72mmh21 (0.2 3 1029m s21) (liquid

equivalent) or the total precipitation of rain plus snow

during the previous hour is.0.01mm, snow is diagnosed

as long as the current 2-m temperature (from the model

forecast) is,38C. If the 2-m temperature is$38C, rain is

diagnosed instead.

2) RAIN VERSUS FREEZING RAIN

If SF , 0.6 and either the current rain rate at the

ground is at least 0.01mmh21 or there has been at least

0.01-mm total precipitation of rain plus snow during the

previous hour, then rain or freezing rain is diagnosed. If

the 2-m temperature is ,08C, freezing rain/drizzle is

diagnosed; otherwise, rain is diagnosed.

3) ICE PELLETS AND RELATED DEPENDENCIES

Dependencies regarding IP diagnosis are more com-

plicated as a result of the attempt to match observing

guidelines as described earlier in section 3. If the cur-

rent fall rate for graupel is .0.0036mmh21 (1.0 3
1029m s21), ice pellet precipitation is generally diag-

nosed, but with further dependencies including 2-m

temperature and relative instantaneous fall rates for

graupel, rain, and snow. First, for IP, the graupel fall rate

at the surface must be greater than that for snow; oth-

erwise, S is diagnosed and not IP. Also to limit IP di-

agnosis to situations with conditions normally expected,

there must be a level aloft with the rain mixing ratio

.0.005 g kg21. [Note that with a previous maximum rain

mixing ratio set as.0.05 g kg21, IP was rarely diagnosed

(Elmore et al. 2015), resulting in this modification.] If, in

FIG. 3. As in Fig. 2, but for precipitation-type forecasts shown separately for each precipitation type with (top left)

rain, (top right) snow, (bottom left) freezing rain, and (bottom right) ice pellets.
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addition, the fall rate for graupel is greater than that for

rain, IP only is diagnosed, not FZ and not rain. If the 2-m

temperature is .38C, IP is not diagnosed, thus not al-

lowing IP to include the condition of convectively

produced hail.

b. Rationale for explicit precipitation-type diagnosis

Although the model generally produces a dominant

precipitation type, in the difficult cases of cold-season

mixed precipitation, simply using the precipitation types

directly from the model without any qualification as to

the surface accumulation rate of that particular species

leads to a confusing picture when displayed as a super-

position of binary (0/1) fields. This is because at 2-m tem-

peratures not far from 08C, the physical solution within a

multispecies microphysics scheme can give small amounts

of more than one hydrometeor species falling to the sur-

face in the model. Thus, it was necessary to introduce

postprocessing logic into the classification scheme for ap-

propriate thresholds of the multispecies fall rate.

Thresholds for SF and 2-m temperature in the

precipitation-type diagnostic logic were subjectively

FIG. 4. Surface present weather observations including precipitation type valid at (top) 1500

and (bottom) 1600 UTC 1 Jan 2015 (courtesy of Plymouth State University; http://vortex.

plymouth.edu/myo/sfc/pltmap-a.html). Weather symbols are described online (http://www.

meteor.wisc.edu/;hopkins/aos100/sfc-anl.htm).
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estimated (no effect on the actual forecast model solu-

tion) against observations of precipitation type from

Automated Surface Observing System (ASOS) reports

to avoid the problem of diagnosing too large (or too

small) areal coverage of mixed precipitation (e.g., rain/

snow or freezing rain/ice pellets/snow). It is also neces-

sary to make use of the model forecast of the 2-m tem-

perature to identify situations where rain is falling at

temperatures , 08C, and to limit the IP diagnosis to

formation in cold-season storms and exclude convec-

tively produced hail. Allowing snow precipitation-type

identification with 2-m temperatures up to 18C accounts

for the wet-bulb effect, which is already identified in the

Thompson et al. microphysics via energy exchange be-

tween snow and environmental air as the snow falls at its

fall speed.

To increase the likelihood of successfully predicting

freezing drizzle at the surface, the more recent Thompson

et al. microphysics schemes (Thompson et al. 2008;

Thompson and Eidhammer 2014) include a two-moment

rain component in order to better describe the collision–

coalescence process in clouds that aremainly composed of

liquid particles but at temperatures, 08C throughout the

cloud depth.

We also note that the precipitation rates used cur-

rently for themodel explicit precipitation-type diagnosis

are 1) instantaneous and 2) have a minimum threshold

(0.0001mmh21) much lighter than sensible by current

measurement methods. The use of the instantaneous

precipitation rates means that this diagnostic method

could be expanded into higher-frequency products or

into a future PDF precipitation-type field. The very

small precipitation rate thresholds were designed to

capture very light drizzle or light snow events, even at

the expense of showing a bias versus ASOS-level sen-

sitivity for precipitation types (not shown). Thériault
et al. (2006) and Thériault and Stewart (2010)

considered a precipitation-type fraction but did not

FIG. 5. As in Fig. 3, but for areas of nonzero 1-h precipitation in the form of (top left) rain, (top right) snow, and

(bottom) graupel.
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address how to approximate observer guidelines for yes/

no precipitation-type identification.

4. Case study and 2013–15 validation

a. Case example

A brief example is shown to illustrate application of

the explicit precipitation-type diagnosis in Figs. 2–4 for a

winter storm forecast valid at 1600 UTC 1 January 2015.

Figure 2 shows precipitation type diagnosed from an

RAP (13 km) 1-h forecast with areas of snow, freezing

rain, and ice pellets from New Mexico across northern

Texas with rain over southern Texas. Smaller areas of

mixed precipitation types are shown from northern

Texas to the Arkansas–Louisiana border in the 1-h

forecast with the explicit precipitation-type diagnosis,

including S–FZ, FZ–IP, and R–IP mixtures. The total

1-h precipitation is added in Fig. 2b, indicating the su-

perset of possible areas for precipitation-type assign-

ment (gray) and areas of heavier precipitation (.0.1 in. h21

in light green), usually for rain but some for FZ and

IP. A breakdown of each precipitation-type forecast

area is added in Fig. 3 to see the specific coverage areas

of each precipitation type. The METAR observations of

precipitation type valid at the forecast valid time are

shown in Fig. 4. Freezing rain observations in Fig. 4 are

generally within the FZ forecast area evident in Figs. 2

and 3. The rain–snow line in the observations (Fig. 4) is

very close to that diagnosed for the 1-h RAP forecast.

Some snow and FZ reports are shown in the Dallas–Fort

Worth, Texas, area (Fig. 4), similar to the mixed S–FZ

area forecast just west of those cities. A freezing rain

report (Fig. 4) at 1500 UTC in central Texas (Abilene)

was covered by the forecast FZ area in Figs. 2 and 3.

Freezing rain and drizzle was diagnosed near but not

covering the Lubbock FZ report in western Texas. The

areal coverage in the forecast, especially for snow and

freezing rain, is larger than shown in the observations,

because of the very light precipitation threshold of

0.0001mmh21, well below the measurable minimum of

about 0.25mmh21. Areas of 1-h precipitation (supersets

of the areas of instantaneous precipitation) are also

shown for rain, snow, and graupel in Fig. 5, the starting

point for the algorithm. The value added of applying the

explicit precipitation-type algorithm can be seen in

comparing Fig. 5 with Fig. 3 (and in Fig. 2b). The

precipitation-type algorithm identifies areas of FZ and

limits the R, S, and IP assignment by the temperature,

precipitation intensity, and other constraints shown in

the logic flow in Fig. 1 and described in section 3.

For comparison with another precipitation-type di-

agnostic, Fig. 6 shows the results from the dominant pre-

cipitation type (Manikin 2005) combining Baldwin et al.,

Ramer, Bourgouin, and revised Baldwin et al. techniques

using gridded data from the same RAP 1-h forecast

shown in Figs. 2 and 3 for the explicit precipitation-type

diagnostic described in this paper. The general coverage

is slightly larger with the dominant precipitation type in

Fig. 6 (any precipitation greater than zero qualifies). The

dominant precipitation type (Fig. 6) also shows a signifi-

cant area of ice pellets in western Texas not shown with

the explicit precipitation-type diagnosis. A sounding for

Lubbock (Fig. 7) from the same common RAP 1-h

forecast grid used for both precipitation-type diagnoses

indicates a saturated level above 08C that could support

IP, although the explicit precipitation type based on

Thompson et al. microphysics indicated snow with occa-

sional mixed FZ. Observations from 1400 to 1900 UTC

showed only FZ and S observations in western Texas

(only 1600 UTC; shown in Fig. 4). Generally, fewer

details are shown in Fig. 6 (dominant) than Fig. 2 (ex-

plicit), including the freezing rain in western Texas and

snow reports near the Dallas area. The dominant

precipitation-type scheme also cannot show mixed pre-

cipitation, by definition, but this condition is diagnosed

with the explicit precipitation-type scheme in Fig. 2 in

some areas in northern Texas. This comparison is

qualitative and suggests that the explicit precipitation-

type diagnosis is credible.

b. Validation of explicit 1-h precipitation-type
forecasts from HRRR and RAP

Probability of detection for 1-h RAP (ESRL experi-

mental) precipitation-type forecasts is presented in

Fig. 8 over a 28-month period including two full winter

FIG. 6. As in Fig. 2, but for the dominant precipitation-type

diagnostic (Manikin 2005) combining Baldwin et al., Ramer,

Bourgouin, and revised Baldwin et al. diagnostics.
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seasons using the nearest 13-km RAP grid point to the

METAR observation location. The probability of de-

tection for occurrence events (PODy) is ;0.9 in all of

the 24 months over the conterminous United States for

rain and about 0.8–0.9 for snow over the same period

during winter months. The PODy for IP ranges from 0.3

to 0.55 (most common month—February) and slightly

lower for FZ. The PODy for IP from this diagnostic is far

higher than that shown in Elmore et al. (2015) who used

RAP results not including the IP algorithm change in the

ESRL version in January 2013. Both IP and FZ usually

occur in geographically limited areas, so high PODy is

difficult to achieve in real-data modeling. The deficiency

in PODy for IP and FZ is likely due to errors in tem-

perature, water vapor, and hydrometeor initialization.

The number of IP and FZ events is rare: for instance,

during February 2015, for METARs within the CONUS

area including southern Canada, the total number of re-

ports was about 60000 for snow, 30000 for rain, 2000 for

freezing drizzle/rain, and 400 for ice pellets. As mentioned

at the end of section 3, the precipitation-type diagnostic

method uses a minimum threshold (0.0001mmh21) that is

much lighter than detectable by current measurement

methods (minimum 0.25mmh21), resulting in a high false

alarm ratio (FAR) versus METAR observations (Fig. 9).2

The overall FAR for measurable (0.25mm) precipitation

for RAP versus METARs is depicted in Fig. 10, showing

an overall FAR of about 0.35–0.40, much lower than that

shown in Fig. 9 with the far lower threshold for the

precipitation-type algorithm designed to capture very

light but significant freezing precipitation events.

5. Conclusions

The explicit precipitation-type diagnostic scheme de-

scribed here is a relatively new approach applicable with

FIG. 7. Sounding skewT–logP profile of temperature andmoisture at Lubbock for the 1-h RAP

forecast valid at 1600 UTC, the same RAP run shown in Figs. 2 and 5.

2 It should be noted that the ASOS used at METAR sites cur-

rently does not have the ability to detect IP. This precipitation type

is nominally only reported when an ASOS observation is aug-

mented by a human observer, partially accounting for the paucity

of IP reports.
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explicit model forecasts of rain, snow, and graupel pre-

cipitation at the surface. This scheme has been applied

to NOAA operational models that use the Thompson

et al. cloud and precipitation microphysics, specifically,

the HRRR and RAP, and before 2012, with the RUC.

This scheme was shown to provide effective results in a

2-yr evaluation and in a winter storm case study. This

scheme has been used at NCEP in its hourly updated

models (RUC, RAP, and HRRR) since 2005.3

This explicit diagnosis of precipitation type from

the RAP and HRRR is directly linked with the mul-

tispecies cloud microphysics. Uncertainty in forecast

thermodynamic structure is obviously a source of error

in precipitation-type forecasts using this diagnostic

method, as shown for other methods (Thériault et al.
2006; Reeves et al. 2014). Probabilistic precipitation-

type forecasts are an obvious extension of this explicit

precipitation-type algorithm, using time-lagged and

explicit ensembles of RAP, HRRR, and/or other models

with multispecies cloud microphysics schemes. Explicit

precipitation-type forecasting accuracy is expected to

further improve with assimilation of dual-polarization

radar with diagnostic of hydrometeor type, a direction

being taken in RAP and HRRR data assimilation

development.

It should be noted that the algorithm discussed here

is intended for wintertime application. The Thompson

et al. microphysics scheme (both the 2008 and 2014

versions) does not have a separate hail category but,

in situations conducive to deep convection, will

sometimes produce graupel precipitation during the

warm season when used within cloud-permitting

forecast models such as the HRRR. Work to

introduce a hail-size algorithm into the Thompson

et al. microphysics for warm-season forecast appli-

cations will be discussed elsewhere.

FIG. 8. Probability of detection for four different precipitation

types [rain (red), snow (blue), freezing rain/drizzle (orange), and

ice pellets (gray)] from 1-h forecasts from the ESRL experi-

mental 13-km RAP as verified against METAR observations vs

the nearest single 13-km grid points. Results are averaged over

30-day periods over the period from 15 Aug 2013 through 15

Dec 2015.

FIG. 10. As in Fig. 9, but for 1-h total precipitation of at least

0.01 in. h21 (0.25mmh21). Values are for 60-day averages.

FIG. 9. As in Fig. 8, but for FAR. The explicit precipitation type is

applied for 1-h precipitation as low as 0.0001mmh21 to capture

very light freezing precipitation whereas METAR observation

precision is limited to a min of 0.25mmh21.

3 Occurrence of mixed snow/rain was excessively diagnosed with

this scheme until a correction to a snow fraction error in January

2011. The scheme as described here, including the January 2011

correction also noted in Ikeda et al. (2013), was incorporated into

the initial implementation of the RAP at NCEP on 1 May 2012.
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