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Climate change as a long-term stressor for the fisheries
of the Laurentian Great Lakes of North America
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Abstract The Laurentian Great Lakes of North

America provide valuable ecosystem services, includ-

ing fisheries, to the surrounding population. Given the

prevalence of other anthropogenic stressors that have

historically affected the fisheries of the Great Lakes

(e.g., eutrophication, invasive species, overfishing),

climate change is often viewed as a long-term stressor

and, subsequently, may not always be prioritized by

managers and researchers. However, climate change

has the potential to negatively affect fish and fisheries

in the Great Lakes through its influence on habitat. In

this paper, we (1) summarize projected changes in

climate and fish habitat in the Great Lakes; (2)

summarize fish responses to climate change in the

Great Lakes; (3) describe key interactions between

climate change and other stressors relevant to Great

Lakes fish, and (4) summarize how climate change can

be incorporated into fisheries management. In general,

fish habitat is projected to be characterized by warmer

temperatures throughout the water column, less ice

P. D. Collingsworth (&) � Z. S. Feiner � T. O. Höök
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cover, longer periods of stratification, and more

frequent and widespread periods of bottom hypoxia

in productive areas of the Great Lakes. Based solely on

thermal habitat, fish populations theoretically could

experience prolonged optimal growth environment

within a changing climate, however, models that

assess physical habitat influences at specific life stages

convey a more complex picture. Looking at specific

interactions with other stressors, climate change may

exacerbate the negative impacts of both eutrophication

and invasive species for fish habitat in the Great Lakes.

Although expanding monitoring and research to

consider climate change interactions with currently

studied stressors, may offer managers the best oppor-

tunity to keep the valuable Great Lakes fisheries

sustainable, this expansion is globally applicable for

large lake ecosystem dealing with multiple stressors in

the face of continued human-driven changes.

Keywords Great Lakes � Climate change �
Fisheries � Habitat � Management

Introduction

Large lakes are important ecosystems that contain the

majority of the planet’s surface freshwater and provide

services valued by surrounding communities, includ-

ing drinking water, hydropower, recreational oppor-

tunities, and fisheries (Beeton 2002). Historically, fish

populations in large lakes have been adversely

affected by the same diverse anthropogenic stressors

that are impacting aquatic ecosystems across the

globe, e.g., habitat degradation (Smith 2003), overex-

ploitation (Pauly et al. 2002), and invasive species

(Strayer and Dudgeon 2010). More recently, climate

change has emerged as an additional stressor to fish

populations and fisheries in these large lakes. Pro-

jected climate change is expected to cause increased

temperature and changes in precipitation patterns,

resulting in altered thermal regimes and nutrient

loadings, and consequently bringing about changes

in individual growth, population dynamics, commu-

nity structure and ultimately, fisheries production in

large lake fisheries (Jeppesen et al. 2010; Portner and

Farrell 2008; Sheridan and Bickford 2011). These

direct climate impacts coupled with other existing

stressors may ultimately have strong effects on

fisheries production in large lakes (Ficke et al. 2007;

Portner and Peck 2010).

The Laurentian Great Lakes of North America form

the largest group of freshwater ecosystems on Earth

and contain nearly 20% of the planet’s surface

freshwater. The watershed of the Great Lakes basin

(Fig. 1) generally ranges from more forested and less

developed areas in the north to more agricultural and

urban development in the southern portion of the basin

(Hayes 1999). The lakes provide important ecosystem

services, including fisheries, to one-tenth of the

population of the United States and one-quarter of

the population of Canada (Beeton et al. 1999).

Historically, two main types of fish assemblages

existed across the Great Lakes. In deeper and less

productive open waters of lakes Superior, Michigan,

Huron, and Ontario and eastern Lake Erie, the fish

assemblage mainly consisted of salmonines and

coregonids and main fishery species included lake

trout (Salvelinus namaycush), lake whitefish (Core-

gonus clupeaformis), cisco (shallow water, or for-

merly lake herring, Coregonus artedi), and deepwater

chubs (Coregonus spp.) (Eshenroder and Burnham-

Curtis 1999). In the shallow and more productive

western basin of Lake Erie and embayments such as

Green Bay (Lake Michigan), Saginaw Bay (Lake

Huron), and Bay of Quinte (Lake Ontario), the fish

assemblage mainly consisted of percids, cyprinids,

and centrarchids and the main fishery species included

blue pike (Sander vitreus glaucus), walleye (Sander

vitreus), and yellow perch (Perca flavescens) (Eshen-

roder and Burnham-Curtis 1999).

These historical fish communities of the Great

Lakes have been reshaped by habitat alterations,

overfishing, stocking, invasive species, and excessive

nutrients and sediment loadings (Hayes 1999; Gaden

et al. 2012). Because climate change has the potential

to stress fish communities in the Great Lakes by

further altering fish habitat and through its interactions

with existing stressors, fish responses to climate

change are best understood within an ecosystem

context. Herein, we aim to improve our understanding

of the potential responses of Great Lakes fisheries to

climate change, both in isolation and in combination

with other human-driven stressors. Such knowledge

could enhance the ability of agencies to manage their

fisheries, as well as the expectations of their con-

stituents. Toward this end, our review paper seeks to,

(1) summarize projected changes in climate and fish
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habitat in the Great Lakes; (2) summarize fish

responses to climate change in the Great Lakes; (3)

describe key interactions between climate change and

other stressors relevant to Great Lakes fish popula-

tions, and (4) summarize how climate change can be

incorporated into fisheries management. Below, we

present a brief overview of the history both of human-

driven stressors on Great Lakes fish and fish-

eries and relevant management actions as a way of

providing some historical context to the issues

currently facing fisheries management in this system.

Overview of non-climate anthropogenic stressors

on Great Lakes fishes

Habitat destruction

Fish in the Great Lakes have been stressed by habitat

alterations since the early eighteenth century when

dams were first built in the drainage basin (Beeton

et al. 1999). These dams not only blocked spawning

migrations for potamodromous fishes but also altered

flow regimes and habitat structures in tributaries

(Hayes 1999). During the early twentieth century, fish

habitats were further degraded by human activities

related to natural resource extraction in the watershed

such as timber harvesting and mining and converting

forests and wetlands into agricultural and other

developed areas, which led to increased transport of

sediments and decreased water clarity in nearshore

areas (Beeton et al. 1999). Coastal wetlands in

particular are important breeding or nursery habitats

for many Great Lakes fish species (Jude and Pappas

1992; Trebitz and Hoffman 2015), and physical

disturbances (e.g., drainage, diking, shoreline harden-

ing) have led to loss of these services in many areas

(Trebitz et al. 2009; Wilcox and Whillans 1999). For

example, over 97% of the coastal wetland acreage

surrounding the Detroit River (a major tributary in

western Lake Erie) has been lost owing to develop-

ment since the early 19th century (Manny 2007).

Invasive species

The proliferation of nonnative sea lamprey (Petromy-

zon marinus) and alewives (Alosa pseudoharengus),

which reached the upper Great Lakes from the Atlantic

Ocean through the Welland Canal, was one of the

dominant stressors in the first half of the twentieth

Fig. 1 Great Lakes watershed map
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century (Eshenroder and Burnham-Curtis 1999). Mor-

tality imposed by parasitic sea lamprey contributed

substantially to the collapse of lake trout populations

already stressed from fishing pressure before the

1950s in Lakes Michigan, Huron, and Ontario. Later,

fishing and sea lamprey predation shifted to smaller

deepwater fishes and caused severe declines in lake

whitefish populations and the extinction of three

deepwater ciscoes (Coregonus nigripinnis, C. johan-

nae, and C. reighardi). With severe declines in

predatory lake trout and planktivorous ciscoes, plank-

tivorous alewife populations exploded across the lakes

by the late 1950s (Miller 1957). Alewife predation on

larvae further stressed native fish populations such as

lake trout, yellow perch, and walleye (Madenjian et al.

2008). Since the mid-1980s, a series of invasions by

nonnative species from the Ponto-Caspian region have

caused major changes in the Great Lakes. In partic-

ular, the dreissenid (zebra and quagga mussels,

Dreissena polymorpha and D. bugensis) colonization

of the Great Lakes has dramatically altered the fate of

particulate nutrient inputs and the lake ecosystem.

When dreissenids reach large population sizes, they

sequester primary production in nearshore benthic

habitats, which acts to constrain nutrients that would

otherwise be available to higher trophic levels in

offshore areas (Hecky et al. 2004; Higgins and Vander

Zanden 2010).

Nutrient pollution

Excessive nutrient loading and eutrophication was of

major concern in the Great Lakes by the 1960s (Beeton

1965). Although open waters remained mostly olig-

otrophic, eutrophication became common in shallower

waters with large tributary inflows such as the western

basin of Lake Erie, and embayments such as Saginaw

Bay and Green Bay (Vollenweider et al. 1974).

Eutrophication was manifested through algal blooms

(including harmful algal blooms, in the western basin

of Lake Erie) and bottom hypoxia (in particular in the

central basin of Lake Erie) (Bierman and Dolan 1981;

Ludsin et al. 2001). Given the recognition that

phosphorus typically limits primary production in

freshwater, limits on total phosphorus loads were

established in the 1972 Great Lakes Water Quality

Amendment, which restricted phosphorus from point

sources in particular (Dolan and Chapra 2012).

Management actions

In the Great Lakes, policies and laws governing

fisheries were developed in the states and Ontario

during the nineteenth century (Brenden et al. 2012),

and fish population declines throughout the first half of

the twentieth century led to additional management

actions (e.g., Smith 1968). However, the development

of effective policies was slow (Regier et al. 1999).

Commercial fisheries in the Great Lakes were well

established by the 1880s and exploitation gradually

increased due to increases in fishing effort and

improvements in technology (Brenden et al. 2012).

Through time, overfishing led to reductions in total

harvests across all five Great Lakes, including sharp

declines in once-abundant ciscoes, and extinctions of

several valuable fishes such as blue pike (Eshenroder

and Burnham-Curtis 1999). In response to the threats

from sea lamprey, the Convention on Great Lakes

Fisheries was signed by the U.S. and Canada in 1954

and the newly formed Great Lakes Fishery Commis-

sion was tasked with developing a sea lamprey

management program that began during the late

1950s (Gaden et al. 2012). The sea lamprey control

program eventually focused on the effective applica-

tion of chemical lampricides targeting sedentary larval

stages in streams (Smith and Tibbles 1980). To make

use of the burgeoning populations of nonnative

alewives and exploit the reduction in sea lamprey,

salmonine stocking programs were initiated in 1966

and enjoyed tremendous success (Tody and Tanner

1966). The introduction of Coho (Oncorhynchus

kisutch) and Chinook salmon (O. tshawytscha)

resulted in profitable recreational and charter fisheries

(Thayer and Loftus 2012) and reduced alewife abun-

dance at levels far below those observed during earlier

decades (Madenjian et al. 2008).

Projected changes in climate and fish habitat

in the Laurentian Great Lakes

Temperature and precipitation are two notable external

climate drivers predicted to change over this century in

the Great Lakes region (see Fig. 2; Hayhoe et al. 2010;

McDermid et al. 2015 for a summary of how climate

has already been changing). Downscaled forecasts

consistently predict warmer temperatures and increas-

ing total precipitation, but with considerable
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spatiotemporal variation that is driven, in part, by

which general circulation model (GCM) and emission

scenario is used and the specific microclimate drivers

affecting the Great Lakes region (Pryor et al. 2014).

By the mid-twenty first century, air temperatures are

generally projected to increase by 2–3 �C and precip-

itation by 5–10% (Kling et al. 2003; Hayhoe et al.

2010; Wang et al. 2016). Near the end of the twenty

first century, those increases will rise to about 2–8 �C
and 6–14%, respectively (Kling et al. 2003; Hayhoe

et al. 2010; Wang et al. 2016). For both periods, large

seasonal variation is predicted, with summer predicted

to have the largest increase in temperature, whereas

winter and spring are predicted to have the largest

increase in precipitation (Kling et al. 2003; Hayhoe

et al. 2010). Even within a season, the precipitation

patterns may be variable, with the frequency of high

rainfall events potentially doubling by 2100 (Kling

et al. 2003). Atmospheric climate change can affect

fish habitat by influencing aspects of the thermal

environment (e.g., water temperature, ice cover), the

chemical environment (e.g., nutrient concentrations,

oxygen concentrations), and physical habitat (e.g.,

water levels, nearshore spawning habitat). In addition

to affecting fish habitat, these changes can also affect

the densities of prey available to fish (see Fig. 2).

Below, we describe these potential effects in greater

detail.

Thermal habitat

Warming air temperatures and increased downward

longwave radiation can influence both water temper-

atures and ice cover in the Great Lakes. The spatial

extent of ice coverage declined 71%, on average, in

the Laurentian Great Lakes between 1973 and 2010

Fish 
community 

composition

Air temperature

Precipitation

Land use

Fig. 2 Conceptual framework describing the complex, hierar-

chical linkages between external drivers (air temperature,

precipitation, land use) and ultimate fish responses in the Great

Lakes. The external drivers directly influence the abiotic

variables associated with fish habitat (thermal, chemical,

physical). These abiotic variables, in turn, can affect predation

rates on fishes, as well as the densities of prey available to fishes.

In the Great Lakes, many of these biotic factors that influence

fish populations are heavily influenced by nonindigenous

species. Within this ecosystem perspective, these abiotic and

biotic factors influence fish population demographics (e.g.,

recruitment, growth, phenology) which, in turn, shape commu-

nity composition of fishes
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(Wang et al. 2012) and declined by 5 days per decade

in 65 lakes during 1975–2004 in the Great Lakes

region (Jensen et al. 2007). Ice cover can influence the

physical conditions for fishes whose eggs incubate

during the winter by ameliorating wave action in

shallow areas (e.g., lake whitefish; Brown et al. 1993).

Despite these observations, predicting exactly how ice

cover will change with continued warming is difficult

because of high, unexplained variation in the past

(Wang et al. 2012), as exemplified by the recent near

record-high ice coverage during 2013–2014 (Grone-

wold et al. 2015). Recognizing the potential for

unusual years of high ice cover, most models project

less ice cover for the Great Lakes by the middle and

end of the twenty first century (Lofgren et al. 2002;

Notaro et al. 2015b). For example, Lofgren et al.

(2002) concluded that the duration of ice cover in

Whitefish Bay (eastern Lake Superior) will decline by

a factor of 3 by the late twenty first century, and by a

factor of 8 in eastern Lake Erie, under the Canadian

Global Coupled Model 1 business as usual scenario.

Similarly, the frequency of ice-free winters in White-

fish Bay were predicted to increase from 0% in the late

twentieth century to 36% in the late twenty first

century, while in eastern Lake Erie, the increase was

from 2 to 96%. Ice coverage, or lack thereof, can even

have impacts on water temperature that carry over to

subsequent seasons, leading to unseasonably cold or

warm temperatures in the summer and fall, respec-

tively (Austin and Colman 2007; Gronewold et al.

2015). Winter temperature variability could play an

important role in future Great Lakes climates.

Research has proposed that the preferential heating

of high-latitude regions by greenhouse gases, greater

than at low latitudes, can lead to greater and more

persistent variability in temperatures at mid-latitudes,

especially during winter. A general discussion is

provided by Shepherd (2016), stemming in part from

Francis and Vavrus (2012); however, these findings

have been seriously called into question by Wallace

et al. (2014). If this enhanced variability is borne out,

it could lead to high contrast amongwinters in terms of

air and water temperature and ice cover, as illustrated

by the difference between the low ice-cover winter of

2011–12 and the high ice-cover winter of 2013–14.

Increased air temperature also has been associated

with warming of the surface water temperatures in the

Great Lakes during recent decades (Fig. 3; Austin and

Colman 2007; Dobiesz and Lester 2009). Given that

fish generally occupy waters below the surface,

knowledge of whether or not water temperatures

throughout the water column have warmed would be

more relevant. Unfortunately, time series of vertical

temperature profiles are rare in the Basin (McCormick

and Pazdalski 1993). The most common sources of

sub-surface water temperatures are nearshore water

intakes, which have shown both evidence for warming

and earlier stratification and no evidence of warming

over the past decades and century (McCormick and

Fahnenstiel 1999; Lyons et al. 2015; Trumpickas et al.

2015). An empirical data set of whole water column

profiles from offshore, central Lake Erie from 1983 to

2002 revealed a warming trend of about 0.04 �C per

year for the integrated water column (Burns et al.

2005). On the other hand, Minns et al. (2011) reported

no change in hypolimnetic temperature from 1972 to

2008 in Bay of Quinte, Lake Ontario. Bai et al. (2013)

recently developed a hydrodynamic model and

reported integrated water temperature time series in

all five lakes from 1993 to 2008, but no patterns were

apparent. Finally, Austin and Colman (2008) modeled

the stratification period in Lake Superior and esti-

mated the length of stratification has increased

15 days over the past century. Looking forward,

surface water temperature is predicted to increase

2–7 �C for the 2071–2100 period relative to the late

20th century, depending on the lake and emission

scenario used (Trumpickas et al. 2009). Below the

surface, water temperatures were still projected to be

up to 2 �C warmer throughout the water column for

2043–2070 in LakeMichigan under the Coupled GCM

version 3 and A2 emission scenario downscaled using

the Coupled Hydrosphere-Atmosphere Research

Model (Lofgren 2014). The stratification period is also

projected to be longer (Kling et al. 2003; Trumpickas

et al. 2009). Hence, the thermal habitat of fishes will

likely include warmer water temperatures throughout

the water column, a longer period of thermal stratifi-

cation and reduced ice cover during the winter.

Chemical habitat

One key aspect of the chemical habitat for fishes (see

Fig. 2) is phosphorus concentrations, which generally

limits primary production in freshwater ecosystems

(Vollenweider et al. 1974). Projected changes in

precipitation and air temperature can influence the

delivery of phosphorus from the watershed to the lakes
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by affecting tributary flow. Incorporating climate

seasonality is especially important for determining

tributary flow (LaBeau et al. 2015). In general,

increased precipitation will increase flow, but this

can be offset by increased evapotranspiration both on

the lakes and the land of the drainage basin.

Across the Great Lakes, phosphorus loading and the

projected influence of climate change has received the

most attention in western Lake Erie, where eutroph-

ication and harmful algal blooms (HABs) continue to

cause concern (Michalak et al. 2013; Kane et al. 2014;

Bullerjahn et al. 2016). Although ‘‘best management

practices (BMPs)’’ in agriculture would help reduce

sediment and phosphorus runoff, recent simulations in

western Lake Erie indicate that climate-driven

changes in precipitation and air temperature, and the

resultant effects on tributary flow would be even more

influential (Bosch et al. 2014; Cousino et al. 2015). In

the LakeMichigan basin, where phosphorus loading in

the nearshore does not lead to HABs as commonly as

in western Lake Erie, Robertson et al. (2016) modeled

24 different scenarios over the next century and

predicted that a 5% average predicted increase in

precipitation, coupled with a 2.6 �C average predicted

increase in air temperature, would lead to reductions in

annual tributary flow by an average of 1.8%. Although

no simple consensus projection exists for future annual

phosphorus loading in the Great Lakes basin, given the

multiple climatic variables and potential for land use

to influence stream flow, there is greater consensus

about seasonal patterns (see Kunkel et al. 1999; Kling

et al. 2003; LaBeau et al. 2015). Phosphorus loading

will likely increase in the spring, when precipitation

will be higher and the loading potential is higher,

owing to agricultural fields being fallow or the crops

not yet mature. Conversely, phosphorus loading will

likely decrease in the summer when precipitation will

be lower, evapotranspiration will be higher, and the

crops will be active taking up phosphorus.

A second key aspect of chemical habitat for fishes is

dissolved oxygen concentrations and the potential for

hypoxia. Three main processes cause hypoxia in the

Great Lakes and two of these processes are likely to

lead to increased hypoxic conditions under future

climate change. First, during summer stratification,

hypolimnetic waters can become devoid of oxygen

(e.g., central basin of Lake Erie, Scavia et al. 2014)

when primary producers in the photic zone ultimately

die and settle to the bottom of a lake and cause rapid

oxygen depletion through decomposition. Due to

vertical density differences and limited mixing, bot-

tom oxygen is not adequately replenished and hypoxia

develops. During this process, bottom oxygen deple-

tion begins shortly after stratification and continues

until fall turn-over. Warmer future temperatures are

expected to lead to more intense stratification and a

longer stratified period (earlier establishment and later

turn-over, Kling et al. 2003; Trumpickas et al. 2009).

Fig. 3 Mean summer (July–September) water temperatures

(�C) across the Great Lakes between 1980 and 2015, based on

data from NOAANational Data Buoy Center (http://www.ndbc.

noaa.gov/) and Sharma et al. (2015). During this period, water

temperatures increased at rates of 0.08 �C/year in Lake Supe-

rior, 0.05 �C/year in Lakes Michigan and Huron, 0.02 �C/year
in Lake Ontario, and 0.01 �C/year in Lake Erie. Note that data

for Lake Ontario became available after 1985
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In addition, increased primary production could

provide more biomass settling to the bottom, and,

coupled with potentially slightly warmer bottom

temperatures, will lead to increased and more rapid

decomposition. In short, bottom hypoxia during the

summer will likely develop earlier, last longer and

cover a greater spatial extent. Second, shallow,

productive areas of the Great Lakes, such as some

coastal wetlands, can also experience hypoxia under

diurnal cycles (e.g., Nelson et al. 2009). In this case,

high photosynthetic activity during the daytime is

replaced during nighttime by high respiration by both

producers and consumers. Even under current condi-

tions, this process can produce diurnal oxygen cycles,

including nighttime hypoxia in highly productive

ecosystems. Warmer temperatures will both decrease

the solubility of oxygen in water and increase primary

production which can potentially increase nighttime

hypoxia. Finally, highly productive aquatic systems

can become devoid of oxygen during extended periods

of ice cover and winter stratification (e.g., Epstein

et al. 1974; Madenjian et al. 2011). High respiration

rates and limited photosynthetic activity under ice,

coupled with lack of exchange with the atmosphere

can contribute to hypoxia. While winter respiration is

likely to increase in the future, we also previously

noted that ice cover in the Great Lakes is projected to

decline. As a consequence, the prevalence of winter,

under-ice hypoxia is likely to cumulatively decrease in

the Great Lakes.

Acidification

Not an impact of climate per se, but directly linked to

increased atmospheric concentration of carbon diox-

ide, is the potential for acidification of water exposed

to the atmosphere. This has been investigated exten-

sively in the oceans, but on a much more limited basis

in the Great Lakes. Phillips et al. (2015) showed that,

although the various lakes have different baseline

values of pH due to their geology, model simulations

show a trend toward decreased pH over time for all of

the lakes. At the same time, they call for more

thorough and precise monitoring of lake pH, since they

show that although existing measurements are consis-

tent with their projected decrease in pH, their error

bars are large enough that they don’t actually preclude

an increase in pH during 1990–2010. This is really a

case in point of an issue that can cause difficulty in

investigating climate change based on observations:

Especially when looking at local to regional locales,

subtle greenhouse gas-caused trends can be obscured

by noise even on the scale of a couple of decades, but

are expected to continue accumulating so that they

become much more significant at longer time

horizons.

Water levels

Another key habitat variable for many fishes that use

the nearshore, coastal wetlands or tributaries during at

least some portion of their life history is water level.

Water levels in the Great Lakes are established

through a balance of over-lake precipitation, over-

lake evaporation, runoff from the land portion of the

lake’s drainage basin (the net of these three items

being termed ‘‘net basin supply’’), inflow from any of

the Great Lakes that are upstream, and outflow through

the lake’s outlet. While the impact of climate

variability on Great Lakes water levels remained

enigmatic during the twentieth century, the scientific

community’s understanding of climate change’s influ-

ence on net basin supply and, ultimately, lake level has

evolved considerably during recent years (Clites et al.

2014). The earlier studies almost exclusively projected

lower lake levels (e.g., Croley 1990), whereas later

studies using different methods (Manabe et al. 2004;

MacKay and Seglenieks 2013; Notaro et al. 2015a)

showed little change or even modest increases in lake

levels. Lofgren et al. (2011) gave greater credence to

the latter studies by demonstrating that studies that

predicted lower water levels over-relied on near-

surface air temperature as a predictor of evapotran-

spiration from the land surrounding the Great Lakes, to

the exclusion of factors such as the natural seasonal

cycle of solar input. Lofgren and Rouhana (2016)

expanded on this by using an ensemble of General

Circulation Model inputs, and compared the earlier

methods of Croley (1990) with three alternative

methods deemed more physically plausible. The

ensemble using the Croley (1990) method had a

median drop in Lake Michigan-Huron levels of

0.66 m, whereas the alternative methods had a median

drop of 0.14 m. This latter result appears more

realistic, but at the same time, is only the central point

of a large spread of possible results, and more studies

are anticipated. Overall, a growing consensus is

emerging that Great Lakes water levels will likely
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not change as much in the twenty first century as was

originally predicted.

Prey density

In this review, we consider the density of prey for

fishes as an aspect of fish habitat (Fig. 2). Later in the

manuscript, fish responses to these climate—driven

changes in habitat will be further evaluated; because

some fish are piscivores, they could be considered prey

in this context. This section, however, will only focus

on whether or not densities of invertebrates that feed

planktivorous or benthivorous fishes could be influ-

enced by climate—driven changes.

Depending on the lake, zooplankton densities in the

Great Lakes have undergone varying degrees of

change in density and community composition during

recent decades (Conroy et al. 2005; Barbiero et al.

2012, 2014; Bunnell et al. 2014). One mechanism by

which climate can influence zooplankton dynamics is

by altering the timing of peak production. For

example, in other temperate lakes earlier spring

warming leads to earlier phytoplankton blooms, but

not necessarily earlier peaks of herbivorous zooplank-

ton (Winder and Schindler 2004; Shimoda et al. 2011).

Only a few studies from the Great Lakes have reported

a positive correlation between spring temperatures and

total spring zooplankton biomass, but whether these

relationships are causal was uncertain (Ludsin 2000;

Vanderploeg et al. 2012). A second factor by which

climate can influence zooplankton is by altering

temperature-dependent growth and fecundity rates

(e.g., Regier et al. 1990; Stockwell and Johannsson

1997). In this case, one would expect that a changing

climate would influence the zooplankton community

composition by favoring species that can maximize

productivity in the new temperature regime. Despite

these potential direct linkages between zooplankton

and climate, we are unaware of any Great Lakes

studies that have identified a linkage between zoo-

plankton community changes or abundance and

climate. Rather, most studies have concluded that

the zooplankton community has been more regulated

by bottom-up driven declines in phytoplankton

biomass (Barbiero et al. 2011), non-consumptive

predation effects (Pangle et al. 2007), or directly

through predation (Lehman 1991; Stewart et al. 2010;

Bunnell et al. 2011) than climate. Hence, future

research should try to disentangle the effects of

changing climate on Great Lakes zooplankton dynam-

ics, given its potential direct (e.g., physiological,

phenological) and indirect (e.g., chemical habitat)

effects on zooplankton communities.

Climate-driven changes in water temperature could

also theoretically influence the productive capacity of

benthic macroinvertebrates in the Great Lakes (Mag-

nuson et al. 1997). Given the paucity of water

temperature time series throughout the water column,

it should not be surprising that no studies in the Great

Lakes have argued that changes in the benthic

invertebrate community are primarily the result of

climate-driven temperature changes. In contrast, their

dynamics are hypothesized to be regulated by inter-

actions with invasive species (e.g., Nalepa et al. 2009)

or changes in water quality (e.g., Krieger et al. 1996).

However, hypoxia appears to negatively influence

benthic macroinvertebrate production and recruitment

in western Lake Erie. Once the water quality in

western Lake Erie improved and mayfly (Hexagenia

spp., a high-quality prey for fishes) populations

recovered, recruitment of this species was higher

between 1997 and 2002 during years with less summer

stratification, and presumably less hypoxia (Bridge-

man et al. 2006). Hence the benthic invertebrate

community could be negatively affected by future

increases in hypoxia, facilitated through warmer water

temperatures.

Detecting and assessing fish responses to climate

change

Habitat changes associated with climate change are

expected to directly and indirectly affect fish and

fisheries (Fig. 2). In the Great Lakes, however, few

studies have explored the links between fish popula-

tion abundance, habitat variables and climate change,

likely because other human-driven stressors received

more attention (e.g., nutrient inputs: Ludsin et al.

2001; invasive species: Steinhart et al. 2004.). Most

studies examining fish responses to climate change

have used empirical approaches that link observed

growth or recruitment variables to habitat variables

believed to be driven by climate change, either alone

or with other biological variables. Fewer studies,

however, have projected fish population and habitat

responses to climate change, which require not only

downscaled future climate projections, but also
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predictions for habitat variables driven by climate

change in the Great Lakes. Most of these studies have

been relatively limited in scope and fish responses

were assessed under hypothetical changes in habitat

variables (e.g., 1 �C increase in water temperature,

Casselman 2002) or assumed scenarios of habitat

changes (e.g., unchanged food availability, Hill and

Magnuson 1990) rather than explicit predictions based

on downscaled climate models. Although studies

retrospectively detecting or projecting fish responses

to climate change are small in number and limited in

scope, they provide valuable insights into how climate

change may affect fish growth, recruitment, phenol-

ogy, and community composition in the Great Lakes.

Impacts on demographics

Growth

Climate change can affect fish growth directly through

changes in thermal habitat and indirectly through

effects on prey availability, as discussed above

(Fig. 2). It is generally expected that climate-driven

increases in water temperature would enhance the

growth of fishes with higher physiological thermal

optima (i.e., warmwater fishes) and reduce growth of

those with lower thermal tolerances (i.e., cold water

and perhaps coolwater fishes; e.g., Kling et al. 2003;

Portner and Farrell 2008; Graham and Harrod 2009).

However, the capacity of fish to maintain aerobic

activity under increasing temperatures is related to

temperature dependent oxygen limitation, which may

be species-specific (Portner and Farrell 2008). In

principle, increases in ambient temperature would be

expected to enhance growth by increasing the capacity

of fish to consume prey, at least until metabolic costs

become too high to allow for normal, aerobic function

or they surpass energy intake (Brett 1979). The net

change in fish growth in response to climate change

will be determined by how much of the increase in

prey consumption capacity in a warmer environment

can be realized to compensate for the increase in

metabolic costs (Kao et al. 2014). The temperature at

which growth is maximized, as well as the temperature

at which growth becomes negative, will be species-

specific and habitat-specific, depending ultimately on

a variety of factors, including local habitat conditions

(Stefan et al. 2001) and evolutionary history.

In the Great Lakes, fishes are often grouped into

cold-, cool-, and warm-water thermal guilds, with

approximate optimal growth temperatures of 13, 23,

and 28 �C, respectively (Magnuson et al. 1979). On an

annual basis, several studies (Magnuson et al. 1990;

Brandt et al. 2002; Cline et al. 2013) predicted that

climate change will result in volumetric increases in

thermal habitats across all Great Lakes for fishes for all

three thermal guilds. In general, such studies project

that thermal habitats for cold-water fishes will increase

in deeper parts of the Great Lakes, whereas thermal

conditions conducive of fast growth will increase in

the metalimnion and epilimnion for cool- and warm-

water fishes, respectively. However, Cline et al. (2013)

projected that the thermal habitat of siscowet, a

deepwater ecotype of lake trout, will decrease in Lake

Superior. This unique result is likely related to the

extreme thermal requirements of siscowet, which

experience optimal growth at about 4 �C, far below
the optimal growth requirements of other cold-water

species (Magnuson et al. 1990). Taken together, it

appears that, with the exception of siscowet lake trout,

fishes in all three thermal guilds should experience an

increase in the extent and duration of optimal temper-

atures for growth with climate change in the Great

Lakes.

Responses of fish growth to climate change have

been assessed using a theoretical approach—bioener-

getics modeling—for cold-water salmonines (Chi-

nook salmon, lake trout, and steelhead) and lake

whitefish, cool-water yellow perch, and warm-water

largemouth bass (Hill and Magnuson 1990; Brandt

et al. 2002; Kao et al. 2015a, b). These studies

projected that, because fish are able to behaviorally

thermoregulate, their growth should increase with

warmer thermal habitats, if prey does not become

limiting. If prey was limiting, however, growth would

be expected to decrease. Surprisingly, Hill and Mag-

nuson (1990) and Kao et al. (2015a) both showed that

growth of fishes in warmer thermal guilds may not

always increase more than fishes in cooler thermal

guilds when prey is unlimited. For example, during the

period 2043–2070 under a global business as usual

development scenario A2 (IPCC 2000), Kao et al.’s

(2015a) model predicted a lower increase in growth

for cool-water yellow perch (i.e., 7–12%) than for

cold-water lake whitefish (13–34% increase) in south-

ern Lake Michigan under an unlimited prey scenario,

which is opposite than what one might expect with
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warming water temperatures. The reasoning for this

finding is related to the inability of many warm-water

fishes to handle and consume sufficient prey to balance

their larger metabolic costs (Kao et al. 2015a). Hill and

Magnuson (1990) and Kao et al. (2015b) also showed

that under a warming climate consumption will

increase most in spring and fall when prey energy

densities are relatively high (e.g., Madenjian et al.

2006). Such seasonality benifits fish growth because it

increases gross energy intake on an annual basis (Kao

et al. 2015b).

Collectively, the findings from these modeling

studies suggest that changes in prey availability

associated with climate change can be equally, if not

more, important than changes in thermal habitats to

fish growth. For example, under a global business as

usual development scenario A2 (IPCC 2000), Kao

et al. (2015b) showed that about a 10% increase in

prey consumption is enough for Chinook salmon, lake

trout, and steelhead in Lakes Michigan and Huron to

maintain current growth in the projected warmer water

temperatures of 2043–2070 even under less than ideal

thermal conditions. Under unlimited prey conditions,

however, their consumption could increase by

20–70%, and their growth could increase 23–69%.

Because empirical studies also have shown that fish

growth can be positively linked to the availability of

thermal habitat (e.g., Coble 1966; King et al. 1999),

prey availability (e.g., Headley and Lauer 2008; Lumb

and Johnson 2012), or both (e.g., Kratzer et al. 2007;

Rennie et al. 2009; Crane et al. 2015), the predicted

response of fish species to climate change should not

be made based on thermal guild alone. Consideration

of prey and thermal habitat availability also are

needed.

Recruitment

Climate change has the potential to influence fish

recruitment (defined here as recruitment of adults to a

fishery) directly by altering physical and thermal

habitat during the spawning season, as well as during

early development phases (Ludsin et al. 2014; Pritt

et al. 2014). The direction and magnitude of direct

climate change effects will ultimately be determined

by the specific spawning behaviors of individual

species and their thermal tolerances (Coutant 1987).

Another, more indirect pathway for climate change to

influence fish recruitment is through altering

population sizes of species that interact, either as

prey, predators or competitors, with a particular

species (i.e., through impacts on biotic interactions).

Likely owing to the Great Lakes having long-term

datasets on fish abundance, there is a long history of

stock-specific recruitment studies and a full review of

these studies is beyond the scope of this manuscript.

Instead, the aim here is to review studies that directly

addressed the role of climate on fish recruitment using

various methods, including retrospective stock-re-

cruitment, recruitment synchrony among multiple

populations and assessment of recruitment success

for fish during specific life stages.

Retrospective stock-recruitment analyses have long

been used to identify how spawning stock size and

climatic factors influence recruitment dynamics for a

variety of fish species in the Great Lakes. More than

any single factor, warm spring and summer water

temperatures appear to promote recruitment and

production of spring- and summer-spawning fishes

across the basin (Madenjian et al. 1996; Fielder et al.

2007; O’Gorman and Burnett 2001; Redman et al.

2011; Madenjian et al. 2005; see Ludsin et al. 2014 for

review of spawning times for economically and

ecologically important Great Lakes species). Previous

studies also have linked bloater recruitment to warmer

water temperatures during egg incubation periods and

early life stages (Rice et al. 1987), but a more recent

study failed to find any consistent link between

environmental conditions and bloater recruitment in

lakesMichigan and Huron (Collingsworth et al. 2014).

Recent evidence from Lake Erie suggests that

increased precipitation-driven river discharge,

brought on by climate change, could benefit yellow

perch recruitment by influencing the formation of

bigger, more prominent river plumes during the

spring. In this system, larval yellow perch use turbid

river plumes as a refuge from predators without

compromising the ability of larvae to feed (Reichert

et al. 2010; Pangle et al. 2012; Carreon-Martinez et al.

2015). However, the benefits of turbidity for fish

recruitment are not universally experienced for fish

across the Great Lakes. In Lake Superior, larval cisco

survival may be impaired under turbid conditions

because of increased predation by smelt, which are

themselves freed from predation pressure and forage

in surface waters during turbid conditions (Myers et al.

2014). Finally, several different climatic variables,

including fall wind intensity, winter ice cover and

Rev Fish Biol Fisheries (2017) 27:363–391 373

123



spring temperatures have been linked to whitefish

recruitment in the Great Lakes (Lawler 1965; Freeberg

et al.1990), but these relationships are complicated by

recent food-web changes brought about by the intro-

duction of dreissenid mussels (Pothoven et al. 2001;

Claramunt et al. 2010; Gobin et al. 2015). Lynch et al.

(2015) directly assessed the impact of climate change

on lake whitefish populations in the 1836 Treaty

Waters of the upper Great Lakes, using traditional

stock recruitment models and projected physical

habitat conditions. They found that lake whitefish

recruitment may increase in a majority of the

management units of the 1836 Treat Waters, most

likely due to calmer fall wind speeds and warmer

spring temperatures as a result of climate change.

However, the impact of climate change on lake

whitefish recruitment was not uniform across the

study area, with projected declines in recruitment for

some management units (Lynch et al. 2015).

Another way to discern the influence of climatic

variables as a driver of recruitment variation is to

examine patterns of recruitment synchrony for multi-

ple populations over large spatial scales. Warm spring

and summer temperatures have been shown to be

positively related to yellow perch and walleye recruit-

ment across the Great Lakes and have been implicated

in the synchrony of strong yellow perch year-classes

across the entire Great Lakes region over multiple

decades (Honsey et al. 2016). Climate-induced syn-

chrony has also been documented across multiple

cool-water fish species in Lake Michigan, as strong

alewife, yellow perch, and rainbow smelt year-classes

were associated with warm spring and summer water

temperatures as well as below-average wind speeds

during this period (Bunnell et al. 2016). In a similar

study, bloater population sizes and recruitment

showed positive synchrony over multiple decades in

Lakes Superior, Huron and Michigan, with climate

being the most parsimonious explanation (although

but no obvious climate signal was apparent; Bunnell

et al. 2010). Although climate variables can explain

some of the recruitment variability for these species,

numerous examples can be found to show that non-

climate variables can be just as important recruitment

drivers.

Successful recruitment depends, not only on the

environmental conditions experienced by larval and

juvenile fish, but also on different biotic and abiotic

factors aligning at the appropriate place and time.

Therefore, studies that address climate impacts during

specific life stages are particularly useful for detecting

the influence of climate change on fish recruitment.

For example, alewife (Madenjian et al. 2005; Col-

lingsworth et al. 2014), yellow perch (Carreon-

Martinez et al. 2015), and walleye (Fielder et al.

2007) recruitment has been shown to be negatively

affected by predation at different times of their first

years of life. Additionally, Jones et al. (2006) reviewed

the available evidence for changing physical habitat

conditions (e.g., increased water temperatures, altered

hydrology, decreased ice cover and altered water

transparency) in Lake Erie and evaluated how walleye

recruitment could be affected. They used mechanistic

models to simulate specific spawning behaviors for

riverine and lake spawning populations, transport of

larvae to nearby nursery habitats, and habitat supply

for adults and juveniles. Not surprisingly, they

concluded that effects of climate change on walleye

recruitment are dependent on the specific spawning

behavior (river spawning vs. lake spawning) and life

stage (juvenile vs. adult) of walleye that was consid-

ered. Looking at another Percid species, climate

warming may also have a negative impact on yellow

perch recruitment by influencing egg development

and, possibly, through altering the phenology of larval

development and their preferred prey (see full descrip-

tion of phenology mechanism below). Many previous

studies have suggested that warming would benefit

yellow perch in the Great Lakes, however Farmer et al.

(2015), using a combination of field-based recruitment

estimates and controlled laboratory experiments,

found that warm winters may reduce egg quality and

hatching success for this cool-water, spring-spawning

species. The above examples suggest that novel

mechanisms for describing the effects of climate

change on fish recruitment may be best uncovered by

considering the effects of climate on survival during

early life stages.

Taken collectively, the results from previous

research show a complex relationship between climate

and recruitment for fish populations in the Great

Lakes. Fish recruitment is influenced by a complex

suite of variables that govern the production and

survival of early life stages (Houde 1994; Ludsin et al.

2014). In this regard, climate can be viewed as one of

the many factors that regulate recruitment, but it may

play a minor or interacting role when compared with

other major drivers of recruitment success, such as
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access to appropriate food resources and spawning

habitat. When climate factors such as water temper-

atures or wind speeds are considered in isolation,

models may not accurately project future recruitment

success given the importance of other non-climate

variables as drivers in Great Lakes fish species Most of

the evidence for climate impacts on recruitment tends

to come from traditional stock recruitment assess-

ments using a single population, but few studies revisit

these analyses when new data are collected and those

that do are sometimes unable to reproduce their initial

results when extrapolated to nearby populations

(Myers 1998; Collingsworth et al. 2014). More

complexmodels that take into account physical habitat

influences on specific life stages (Jones et al. 2006) and

models that project recruitment for multiple stocks

using realistic climate change scenarios (Lynch et al.

2015) will help provide a realistic picture of the effects

of climate change on fish recruitment in the Great

Lakes, but climate remains but one of the many

interacting factors regulating recruitment in these

systems.

Phenology

Projected climate-driven changes that lead to altered

thermal conditions (e.g., faster spring warming, longer

stratification) can affect Great Lakes fish populations

by altering their reproductive phenology. The direc-

tion and the magnitude of specific phenological shifts

would be expected to vary among species, owing to

variation in life-history strategies (e.g., spawning

season), physiology (e.g., timing of and thermal

requirements for ovarian development), and depen-

dence on climate-driven environmental cues (e.g.,

water warming rate, river flows) relative to other cues

that are less variable among years (e.g., photoperiod).

These shifts in reproductive phenology can include

spawning earlier in response to an early spring onset,

as would be expected for most warm- and cool-water

fishes (e.g., percids, clupeids, and moronids), or

spawning later during the fall, which would be

expected for most cold-water fishes, including lake

trout, lake whitefish, bloater, and other introduced

salmonines (Lyons et al. 2015). Such shifts in

phenology have been documented in fish populations

outside of the Great Lakes basin, including lake,

riverine, estuarine, and oceanic environments (Taylor

2008; Genner et al. 2010; Schneider et al. 2010;

Thackeray et al. 2010, 2013).

Few studies have explored the impact of climate

change on reproductive phenology in the Great Lakes

basin (e.g., Farmer et al. 2015; Lyons et al. 2015).

However, those that have lend support to the notion

that climate-induced warming can alter the timing of

spawning. For example, Lyons et al. (2015) docu-

mented earlier spawning in Lake Michigan yellow

perch in response to an earlier spring onset, with

spawning advancing by 1.8 d to 6.8 d per decade since

the 1980s. Similarly, Farmer et al. (2015) and May

(2015) documented earlier spawning for Lake Erie

yellow perch and walleye, respectively, following

warm winters with an early spring onset relative to

cold winters with a delayed spring onset. Lyons et al.

(2015) also provided evidence to indicate that Lake

Michigan lake trout spawned later during the fall

during the past several decades, which matches

theoretical expectations associated with a longer fall

growing season (i.e., delayed winter onset). However,

given that a corresponding increase in temperature

was not detected, and no shift in spawning time was

observed for a Lake Superior lake trout population

despite warming there, the effects of climate change

on the reproductive phenology of take trout and other

fall spawners remains inconclusive (Lyons et al.

2015).

The lack of study on the impacts of climate change

on reproductive phenology in the Great Lakes is

concerning, given the many ways in which altered

phenology can impact the recruitment process. Most

notably, a climate-driven alteration of the spawning

time can lead to mismatches between newly hatched

larvae and their planktonic prey (Durant et al. 2007;

Thackeray et al. 2010, 2013). This mechanism was

posed as a possible reason for consistent failed yellow

perch year-classes in Lake Erie following short, warm

winters, in addition to the negative effects of a short

winter duration on egg size and hatching success

(Farmer et al. 2015). Specifically, Farmer et al. (2015)

showed that, although yellow perch spawn earlier after

a warm winter (and early spring onset), the shift was

somewhat constrained (advanced by about 1 week)

relative to the shift in the thermal regime (advanced by

about 3 weeks). In turn, following a short, warm

winter, yellow perch larvae may hatch too late after the

peak in zooplankton production to allow for sufficient

feeding to promote recruitment to the juvenile stage

Rev Fish Biol Fisheries (2017) 27:363–391 375

123



(Farmer et al. 2015). Interestingly, mismatches

between larval and zooplankton production may occur

in the other direction, where a fish species spawns too

early, and hence, misses the plankton peak on the other

end. Lake Erie walleye appears to be a strong

candidate for this mismatch, given that its spawning

time appears less constrained than yellow perch

(Schneider et al. 2010; May 2015). As an example,

peak hatching of Lake Erie walleye larvae occurred

two months earlier in response to an early spring onset

(mid-March during 2012) relative to the prior year

(mid-May peak), which had a thermal regime more

typical of Lake Erie historically (May 2015). These

differences between species reinforce the need to

understand what physiological and evolutionary con-

straints affect the reproductive phenology of fish

(Farmer et al. 2015; Lyons et al. 2015), as well as their

prey and predators, to improve understanding and

predictions of how climate change can alter fish

populations through altered reproductive phenology.

Impacts on community structure

Differences in fish growth and recruitment in response

to climate change will result in changes in fish

distribution and production and may, ultimately,

change community structure (Fig. 2). The most com-

mon prediction for the effect of climate change on fish

distribution is that warm-water fishes will expand

northward and the southern boundary of cold-water

fishes will retract (Magnuson et al. 1997). Studies have

projected increases in thermal habitat for warm-water

fishes in lakes Superior and Michigan where such

thermal habitats currently exist only in some nearshore

areas (Brandt et al. 1980; Magnuson et al. 1990; Cline

et al. 2013). Hill and Magnuson (1990) and Brandt

et al. (1980) showed that warm-water fishes may thrive

in these new habitats so long as other environmental

and biological conditions remain unchanged. Magnu-

son et al. (1990) suggested that thermal habitats for

cold-water lake whitefish will increase with climate

change in Lake Erie, the shallowest and southern-most

Great Lake, which implies that increases in temper-

atures alone will not result in retraction of southern

boundary of most cold-water species. One exception is

siscowet, the deepwater ecotype of lake trout in Lake

Superior, whose thermal habitats were predicted to

decrease with climate change (Cline et al. 2013).

Because of expected changes in fish distribution, the

proportion of cool- and warm-water fishes may

increase in fish communities of the Great Lakes,

especially in the northern areas.

Fish community structure can change when preda-

tor–prey interactions are altered in food webs. In the

Great Lakes, predator–prey interactions may change

due to the northward expansion of warm-water

predators (such as smallmouth bass Casselman 2002)

and invasive fish species (Cline et al. 2013) in response

to climate change. Predator–prey interaction may also

be affected by species-specific differences in growth.

For example, Kao et al. (2015b) showed that steelhead

(Oncorhynchus mykiss) and lake trout may be better

adapted to the future climate regime than Chinook

salmon. These salmonines have different diet compo-

sitions and consumptive demands. Steelhead and lake

trout have lower consumptive demands (Kao et al.

2015b) and feed heavily on warm-water round goby

(Roseman et al. 2014) whereas Chinook salmon have

higher consumptive demands (Kao et al. 2015b) and

prefer feeding on cool-water alewives (Jacobs et al.

2013). In addition, Cline et al. (2014) showed that sea

lamprey-induced mortality on lake trout may increase

with water temperature. The findings from these

studies demonstrate the complexity of climate change

effects on fish community structure.

Interactions between climate change and other

stressors

Climate change also can interact with other human-

driven stressors to influence fish production, fish

community composition, and fisheries management.

Below, we discuss interactions between climate

change and three other prominent anthropogenic

stressors in the Great Lakes basin: invasive species;

nutrient pollution; and alteration of top predator

biomass via fish stocking and harvest. These discus-

sions are highly speculative, as empirical investiga-

tions into the effect of these multiple stressors on fish

populations are sparse (e.g., Moran et al. 2010),

especially in the Great Lakes basin (no known

studies).

Climate change and invasive species

Climate warming could facilitate the establishment of

new invaders, both vertebrate and invertebrate, or
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expand the potential range of existing invaders (see

Mandrak 1989; Rahel and Olden 2008; Whitney et al.

2016). In Lake Superior, for example, white perch and

alewife are relatively rare, but are expected to expand

their distributions when with continued climate warm-

ing (Bronte et al. 2003), likely owing to reduced

overwinter mortality (Johnson and Evans 1990; Hook

et al. 2007). Invasive round goby is also another

species that is expected to gain more physiologically

beneficial habitat with continued warming across the

Great Lakes (Kornis et al. 2012). Expanding popula-

tions of invasive species could in turn exacerbate the

largely negative impacts that invasive species have

had on Great Lakes ecosystems via both competitive

and predatory interactions. For example, competition

for zooplankton prey may increase due both to

expanding invasive planktivore populations (e.g.,

white perch; Schaeffer and Margraf 1986) and

continued reductions in pelagic productivity due to

dreissenid mussels (Conroy et al. 2005). In turn, the

largely negative impacts that invasive species have

had on the ecosystems of the Great Lakes could be

exacerbated. While increased competition for prey

(e.g., zooplankton) may occur with expanded invasive

species populations (Schaeffer and Margraf 1986), we

expect that invasive species would have greater

negative effects on native fishes through predatory

effects. For example, expanded round goby, alewife,

and white perch populations would be expected to

negatively affect native fishes such as smallmouth

bass Micropterus dolomieu (Steinhart et al. 2004) and

yellow perch (Brandt et al. 1987; Carreon-Martinez

et al. 2014) by preying on pre-recruited individuals

during the egg and/or larval stage. Similarly, enhanced

predation by invasive species on older, recruited life

stages is conceivable. Bioenergetics modeling has

demonstrated how sea lamprey have benefitted from a

warming Lake Superior since 1979 by growing larger

and more fecund (Cline et al. 2014). This is problem-

atic because invasive sea lamprey have already had

devastatingly negative effects on fisheries by para-

sitizing and killing recreationally important piscivores

and commercially important lake whitefish as adults

(Bence et al. 2003), and larger individuals likely could

inflict a higher mortality rate on their hosts than

smaller ones.

Interactions between climate change and non-fish

invaders, which have proliferated across the Great

Lakes basin during recent decades (see Vanderploeg

et al. 2002) also may indirectly affect fish recruitment

and production in the Great Lakes by altering food

web interactions. These effects, however, can be both

positive and negative. For example, the spiny water

spiny water flea,(Bythotrephes longimanus), is a

voracious carnivorous zooplankter that can compete

with zooplanktivorous fishes (including larval fish) for

smaller zooplankton prey (Bunnell et al. 2011).

Bythotrephes individuals typically attain high densi-

ties in summer and fall in each of the five lakes, with

their densities influenced by both temperature and

predation by alewife and cisco (Keeler et al. 2015;

Pothoven et al. 2007). Warmer surface temperatures

can result in earlier peak densities (Manca and DeMott

2009) and higher consumption rates (Yurista et al.

2010). Together, these factors could lead to intensified

competitive interactions between spiny water flea and

planktivorous fishes in the Great Lakes. By contrast,

climate warming could simultaneously increase prey

availability to zooplanktivorous fishes (and larvae) by

reducing the grazing potential of the quagga mussel

(Dreissena bugensis), a sessile, benthic, filter-feeder

that, in any given year, filters the largest amount of

phytoplankton during non-stratified periods (e.g.,

spring), because plankton can settle down to the lake

bed from anywhere in the water column (Barbiero

et al. 2011). Spring is a period when the larvae of many

ecologically and economically important obligate

zooplanktivore fishes are in high abundance (Ludsin

et al. 2014). Because thermal stratification is expected

to start earlier and last longer in large lake ecosystems,

including the Laurentian Great Lakes (Kling et al.

2003), the ability of quagga mussel grazing to suppress

phytoplankton production during spring would be

expected to decline. In turn, zooplankton availability

to larval fish during the spring could increase, through

bottom-up effects (Bunnell et al. 2014). However, we

remain uncertain of how climate change will interact

with invasive species in this context to affect fish

community composition and fisheries production.

Another high profile invasive species threat in the

Great Lakes is the risk of introduction and establish-

ment of several species of Asian carps, with recent

focus on bigheaded, silver, and grass carp (e.g.,

Cuddington et al. 2014; Anderson et al. 2015;

Chapman et al. 2013; Grippo et al. 2017). Though

there have been a number of risk assessments

concerning Asian carps and the Great Lakes, we are

not aware of major efforts addressing the threats in a
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climate change context, though water temperature is a

key parameter related to spawning and maturation of

bighead carp (Cooke 2016).

A related issue is threats from fish diseases, which

have been the subject of increasing research in the

Great Lakes region, including some nonnative patho-

gens such as viral hemorraghic septicemia (VHS) and

microsporidian parasites (e.g., Bain et al. 2010, 2011;

Escobar et al. 2017). While research is increasing on

implications of climate change on parasites and fish

health generally (e.g., reviewed by Lohmus and

Bjorklund 2015; Cornwell et al. 2015; Sheath et al.

2016; Bruneaux et al. 2017), it appears there has been

limited research with particular focus on the Great

Lakes region. A simple conceptual approach to such

research would entail considering climate implica-

tions for the physical environment, fish, and pathogens

of interest (Chiaramonte et al. 2016).

Climate change and eutrophication

Future climatic conditions in the Great Lakes region

are expected to not only lead to warmer temperatures,

but also increase the intensity and frequency of storm

and precipitation events (Kunkel et al. 1999, 2002). As

discussed above, such increases are expected to cause

enhanced nutrient loading during some seasons (e.g.,

spring, winter), and in turn, shifts in the composition of

primary producers (from edible to inedible species

such as cyanobacteria; Haney 1987; Ghadouani et al.

2003; Litzow et al. 2006), reduced water clarity (with

influences on predator–prey dynamics; Swenson

1977; Lester et al. 2004; Myers et al. 2014), and

increased summertime hypoxia in some highly pro-

ductive locations. As we discuss below, the effects of

these changes on individual fish populations can be

quite complex, depending in large part on attributes of

the ecosystem.

One key factor that will determine whether the

expected increases in precipitation-driven nutrient and

sediment loading positively or negatively affect fish

production is current ecosystem productivity. In more

oligotrophic systems where bottom-up regulation of

higher consumers appears to be occurring and water

transparency tends to be high (e.g., lakes Huron and

Michigan; (Bunnell et al. 2014; Barbiero et al. 2011b),

moderate, climate-driven increases in nutrient runoff

may have primarily positive effects on fish production

by promoting zooplankton production. Likewise,

enhanced precipitation-driven sediment runoff could

benefit fish recruitment in these systems by creating

sediment plumes in the open lake that can offer a

refuge to native species (e.g., yellow perch) from

invasive predatory fishes without compromising feed-

ing (Reichert et al. 2010; Pangle et al. 2012; Carreon-

Martinez et al. 2014). By contrast, in highly eutrophic

ecosystems, climate-driven increases in nutrient load-

ing could hamper fish production by reducing the

availability of preferred thermal habitat and prey to

benthic fishes during periods of extended bottom

hypoxia (Arend et al. 2010; Ludsin et al. 2001; Brandt

et al. 2011), or by promoting the production of

cyanobacteria at the base of the food web that are

largely inedible, toxic to crustacean zooplankton, and

of low nutritional value (Haney 1987; Ghadouani et al.

2003; Litzow et al. 2006). In this way, the relationship

between nutrient loading (or lake trophic status) and

species-specific fish production in the Great Lakes is

likely to follow a dome-shaped curve with greatest fish

production at some moderate nutrient loading (me-

sotrophy) and various deleterious effects leading to

decreased fish production at high nutrient loading

(Oglesby et al. 1987; Caddy 2000).

Given that water clarity is highly influenced by

nutrient and sediment runoff, water clarity is likely to

be highly influenced by changing precipitation pat-

terns. With expected increases in precipitation and

storm events during spring that will cause more

nutrient and sediment runoff, as well as higher

temperatures during the summer that will promote

cyanobacteria production, we should expect water

clarity to decrease with continued climate change. In

addition, changes in turbidity have the potential to

alter lake warming and stratification, depending on

factors such as lake depth and trends in water turbidity

(Rose et al. 2016). Such a shift holds great potential to

indirectly affect fish growth and recruitment by

influencing thermal habitat quality, foraging success

and predation risk (Fiksen et al. 2002; Pangle et al.

2012). However, whether reduced water clarity will

benefit or harm fish recruitment and fisheries produc-

tion is difficult to predict, as it will depend on many

factors, including the nature of the turbidity (sediment

or phytoplankton;Wellington et al. 2010) and the level

of predation risk in the system (Pangle et al. 2012). For

example, previous research has suggested that phyto-

plankton turbidity can greatly reduce foraging success

of all life stages of fish relative to sediment turbidity
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whereas sediment turbidity only seems to negatively

affect older life stages of fish (Wellington et al. 2010).

Thus, in systems such as Lake Erie that are highly

eutrophic and plagued by cyanobacteria blooms

during the summer, fish foraging success might be

expected to decline with continued nutrient loading, at

least during part of the year (Manning et al. 2014). By

contrast, in systems with abundant predators, climate-

driven reductions in water clarity could benefit fish

foraging by serving as a refuge from predation from

predators (Miner and Stein 1996; Abrahams and

Kattenfeld 1997; Reichert et al. 2010; Pangle et al.

2012; Carreon-Martinez et al. 2014), although shifts in

spatial overlap between larval fish and their predators

may result in increased mortality in some cases

(Swenson 1977; Myers et al. 2014). Similar to the

relationship between lake trophic status and fish

production, we expect that the foraging success, and

subsequent growth and recruitment of most species,

will show a unimodal (hump-shaped) relationship with

water clarity (Pangle et al. 2012), similar to the

relationship between Secchi depth and walleye yield

observed by Lester et al. (2004) in Ontario inland

lakes. Ultimately, this expectation points to the need to

model water clarity, and potential interacting effects

of temperature, in the face of future climate and land-

use change, which has yet to be conducted for any lake

ecosystem.

Climate change and fish stocking

Although models indicate that the primary piscivorous

species that are stocked in the Great Lakes (lean form

of lake trout, Chinook salmon, rainbow trout (On-

corhynchus mykiss), brown trout (Salmo trutta), coho

salmon) could theoretically experience a more optimal

growth environment based on a warming climate,

these populations could also experience even lower

growth rates in the future if prey densities are limiting

(see Kao et al. 2015b). These salmonine species, in

particular, are largely reliant on alewife as prey, and

climate alone suggests that alewife recruitment could

increase with increasingly frequent warm springs and

summers (Madenjian et al. 2005). At the same time,

salmonine predation will likely increase under warm-

ing water temperatures, potentially leading to condi-

tions similar to those preceding the decline of the

Chinook salmon fishery in Lake Huron in the early

2000s and creating complex management decisions in

the other lakes (Dettmers et al. 2012; Claramunt and

Clapp 2014). In the future, managers will have to

recognize the lake-specific impacts from climate

change and alter stocking policies to better balance

salmonine physiology and life history with the prey

dynamics and environmental conditions within each

Great Lake (Kao et al. 2015b).

Climate change effects on thermal habitat avail-

ability, forage fish populations, and consumptive

demand have the potential to dramatically influence

future management of both introduced salmonid

populations and future protection and restoration of

important native species. Recent collapses of pelagic

prey fish populations (Riley et al. 2008) and increas-

ingly intense predation pressure on these populations

by naturalized and stocked Pacific salmonids (Jacobs

et al. 2013; Johnson et al. 2010) have led to declines in

the condition and abundance of these popular game

fish and a substantial debate about their future

management in the Great Lakes (Dettmers et al.

2012; Claramunt and Clapp 2014). Although the

primary mechanism for the decline in prey fish

biomass and production is thought to be from factors

other than climate change (e.g., increased piscivory,

declining nutrient inputs, invasive species; Bunnell

et al. 2014), climate change could further complicate

managers’ ability to mitigate such declines through

either stocking or harvest policies.

As part of providing sustainable and diverse

fisheries throughout the Great Lakes, native species

conservation and rehabilitation has been one of the

primary goals of Great Lakes fisheries managers for

several decades (Christie 1963; Stockwell et al. 2009).

Recently, there has been increased interest in reintro-

ducing ciscoes or deepwater ciscoes to areas where

they have previously been extirpated (Zimmerman

and Krueger 2009). Given that the success of many

species reintroductions generally depends on the

availability of quality habitat (Cochran-Biederman

et al. 2015), changes in the thermal suitability and

resource availability in proposed reintroduction areas

should be considered in future restocking efforts.

Although nomodels have forecasted potential changes

in cisco or deepwater cisco thermal habitat, we can

assume that thermal conditions may actually increase

given that other studies have projected increases for

cold-water species (Magnuson et al. 1990; Brandt

et al. 2002; Cline et al. 2013). However, climate

change may also alter the depth distributions of
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coregonid complexes in the Great Lakes, as increasing

epi- and metalimnetic temperatures may force shal-

lower-dwelling species to thermal refugia at deeper

depths, while hypolimnetic processes like hypoxia

may limit the extent of deepwater habitats (Lynch

et al. 2016), thus potentially altering niche differen-

tiation or causing novel trophic interactions between

species. Given that the success of many species

reintroductions generally depends on the availability

of quality habitat (Cochran-Biederman et al. 2015),

and considering the successful reintroduction of

important forage species like ciscoes may also form

the basis for further rehabilitation of native predators

like lake trout, changes in the thermal suitability and

resource availability in proposed reintroduction areas

could be beneficial to future restocking efforts.

Incorporation of climate change into fisheries

management

Climate change adaptation in natural resource man-

agement is a relatively young field, though with a

rapidly expanding literature (e.g., Staudinger et al.

2013; Stein et al. 2013). Stein et al. (2013) reiterated

five adaptation principles, including embracing for-

ward-looking goals, linking actions to climate impacts

(while considering non-climate stressors), considering

the broader landscape context, selecting strategies

robust to an uncertain future, and having agile and

informed management (including, but not limited to,

adaptive management). Adaptation can be targeted at

different levels of biological organization (e.g.,

species, habitats, ecosystems), and ecosystem-based

adaptation is a framework of increasing interest (Stein

et al. 2013), an approach consistent with longstanding

interest in an ‘‘ecosystem approach’’ to fisheries

management in the Great Lakes (Gaden et al. 2012).

A key approach in climate change adaptation is

reducing vulnerability by addressing exposure (i.e.,

change in a climate-related threat), sensitivity (of a

species or system to those changes), and adaptive

capacity (enhancing the capacity of the species or

system to accommodate changes) (Stein et al. 2013).

Approaches to considering climate change impli-

cations for Great Lakes fisheries must take into

account the complicated nature of fisheries manage-

ment in the Great Lakes region, involving eight states,

a Canadian province, and several tribal entities

(including two U.S. inter-tribal organizations), two

federal governments, and the binational Great Lakes

Fishery Commission (GLFC) (Gaden et al. 2008).

Though most management occurs at the state, provin-

cial, and tribal levels, the GLFC has key roles: (1)

coordinating research to inform management allowing

for maximum sustainable production of particular fish

stocks of concern; and (2) controlling sea lamprey

populations (GLFC 2007). The guiding document for

management coordination is A Joint Strategic Plan for

Management of Great Lakes Fisheries, and in the most

recent revision climate change was recognized as a

new emerging issue, though no specific research or

management actions were identified in the plan

(GLFC 2007).

The extent of consideration of climate change in

Great Lakes fisheries management planning among

the states, province, and tribes appears to vary, at least

based on public management documents (see

Table 1). For example, Ontario’s provincial fish

strategy references multiple potential impacts from

climate change, including its role as an interactor with

other stresses such as invasive species (Forestry 2015);

the Ohio Department of Natural Resources-Division

of Wildlife’s fisheries tactical plan recognizes climate

change as an unmanageable threat to Lake Erie

fisheries and seeks ways to understand its impact

(Hale et al. 2013); and the Great Lakes Indian Fish and

Wildlife Commission has multiple projects addressing

climate change and fisheries (Commission 2016).

Michigan’s general fisheries planning document also

references the need for developing decision-support

tools to help in broader scale planning that account

for climate change (Resources 2013). We recognized

that other agency research projects may also be

considering climate-effects on fisheries. For example,

the Michigan Department of Natural Resources car-

ried out a recent climate change vulnerability assess-

ment of 400 fish and wildlife species of greatest

conservation need (and game species), and identified

25 fish species that would be at least ‘‘highly

vulnerable’’ to climate change in the state (Hoving

et al. 2013).

Several broader agreements, strategies and pro-

grams with relevance to Great Lakes fisheries have

begun to address climate change in various ways. The

recently revised Great Lakes Water Quality Agree-

ment has annexes addressing habitat, species, climate

change and other components relevant to fisheries
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(including Lakewide Management Plans) that can

incorporate climate change considerations (see

Table 1). The major program in the United States

addressing multiple aspects of Great Lakes restoration

and protection, the Great Lakes Restoration Initiative,

has in recent years been considering climate resiliency

as part of project review criteria (Agency 2014). There

are multiple references to climate change in Ontario’s

Great Lakes Strategy, including a call for further

research on climate change impacts to fisheries.

In summary, incorporation of climate change

considerations into fisheries management planning in

the Great Lakes region varies but is generally in early

stages. Given that research seeking to understand the

risk of climate change to Great Lakes fisheries dates

back to the late 1980s (e.g., Meisner et al. 1987;

Mandrak 1989; Magnuson et al. 1990), this undevel-

oped management response may be, in part, explained

by more immediate threats to the sustainability of

Great Lakes fisheries, including invasive species and

habitat degradation, as ranked by decision and policy

Table 1 List of public management documents and their relevance climate change

Program/agreement/plan Lead agency Climate component References

A Joint Strategic Plan for

Management of Great Lakes

Fisheries

Great Lakes

Fishery

Commission

(GLFC)

Climate change identified as ‘‘new emerging issue’’

in 1997 plan; no specific research or management

actions identified, though climate change has

arisen in research priorities

GLFC (Great Lakes

Fishery

Commission 2007)

Environmental Principles for

Sustainable Fisheries in the

Great Lakes Basin

Council of Lake

Committees

(GLFC)

No principle emphasizing climate change; however

example includes reference to ‘‘climate changes’’

and uses of habitat, and Principle 3 references

adaptive approaches to protection and

improvement of functional habitats

Council of Lake

Committees (2016)

Charting the Course: Fisheries

Division’s Framework for

Managing Aquatic Resources

Michigan DNR Objective on decision support tools references need

to address climate change in landscape/

waterscape-level decision-making

Resources (2013)

Fisheries Management Plan for the

Minnesota Waters of Lake

Superior

Minnesota DNR Includes brief section on climate change, and

reference to supporting LaMP document on

climate change and Lake Superior (Huff and

Thomas 2014)

Huff and Thomas

(2014)

Lake Michigan Integrated

Fisheries Management Plan,

2003–2013

Wisconsin DNR No reference to climate change Team (2004)

Ohio’s Lake Erie Fisheries, 2015 Ohio Division of

Wildlife

Multiple references to climate change, including

improving understand of fisherie impacts

Hale et al. (2013)

Lake Erie 2015 Annual Report;

Lake Ontario 2015 Annual

Report

New York State

DEC

No reference to climate change Conservation

(2016a) and

Conservation

(2016b)

Ontario’s Provincial Fish Strategy:

Fish for the Future

Ontario MNRF References climate change and multiple potential

impacts (shifting ranges, interaction with other

stresses, etc.)

Forestry (2015)

Great Lakes Water Quality

Agreement

USEPA, ECCC Includes annexes on habitat and species (Annex 7)

and climate change (Annex 9); Lakewide

Management Plans (Annex 2) also addressing

climate change

States (2012)

Climate Change Program GLIFWC Multiple projects examining impacts of climate

change on fisheries

Commission (2016)

Great Lakes Restoration Initiative USEPA Action Plan II notes consideration of climate

resiliency criteria in project review

Agency (2014)

Ontario’s Great Lakes Strategy Government of

Ontario

Multiple references to climate change, including

improving understanding of fisheries impacts

Ontario (2012)
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makers as well as fishery researchers (Mulvaney et al.

2014). In their survey of fisheries managers, climate

change was recognized as a threat concerning ‘‘long-

term stability’’ (Mulvaney et al. 2014). Given that

managers can be judged by fisheries sustainability and

production in the present day and expectations for the

near term, it may not be surprising that those surveyed

also favored modeling exercises that provided predic-

tions for the nearest time scale (2030–2039) as

opposed to decadal periods later in the century.

Other recent reviews have identified a number of

issues that should be addressed in understanding and

managing freshwater fisheries more broadly in a

changing world, with several common themes identi-

fied, including the value in a broader ecosystem

perspective and accounting for multiple interacting

stresses, the importance of adequate monitoring

programs, and involvement/consideration of perspec-

tives of diverse stakeholders/users (e.g., Poesch et al.

2016; Paukert et al. 2016; Hunt et al. 2016). Poesch

et al. (2016) highlighted the importance of adaptive

management, and noted several adaptation plans have

been developed for eastern Canada. In a similar vein,

the importance of both managing for ecological

resilience as well as developing resilient management

systems (given factors such as interacting stresses and

broader uncertainties going forward) has been recog-

nized (Paukert et al. 2016). For example challenges

with cisco in inland lakes in Minnesota (perceived as

related to climate) led to research and consideration of

management responses in a broader landscape context

(Paukert et al. 2016), and such an approach will be

needed to address similar challenges to Great Lakes

fisheries. The importance of considering broad link-

ages between ecological and social systems should

also be considered, including, for example, the

implications of ecological (e.g., warming waters,

changed fish assemblages) or social changes (e.g.,

anglers’ behaviors in response to policy changes) on

broader fisheries management challenges (Hunt et al.

2016). A number of these themes are also identified in

a recent review as part of general recommendations on

Great Lakes fisheries management (Minns 2014).

Conclusions

Climate change shows great potential to directly and

indirectly influence Great Lakes fish populations and

the fisheries that they support through its influence on

habitat quantity and quality, as well as by altering

species interactions. With warmer temperatures and

altered precipitation patterns (e.g., increased spring-

time rainfall and storms) forecasted over the next

century, the abiotic habitat experienced by fish in the

Great Lakes will likely include warmer temperatures

throughout the water column, less ice cover during the

winter, a longer stratification period during the

summer, and more frequent and widespread periods

of bottom hypoxia in productive areas of the Great

Lakes. In turn, these changes in thermal and chemical

habitat are expected to alter biological components of

these ecosystems that are important to fish, including

the availability of prey and predator–prey interactions.

Unfortunately, few climate change studies have

been conducted in the Great Lakes basin to explore the

effects of these expected changes on fish populations.

The majority of such studies have been bioenergetics-

based modeling studies that are laden with assump-

tions about prey availability, foraging rates, and intra-

and inter-species interactions. Further, nearly all of

these studies have only focused on the impact of

warming on thermal habitat, with little (if any)

consideration of expected simultaneous changes in

precipitation. Acknowledging these limitations, how-

ever, these studies have shown general agreement,

suggesting that climate warming will positively influ-

ence most species—especially coolwater and

warmwater species—by creating more habitat for

positive growth, with exception of coldwater species

living in ecosystems at the extremes of their distribu-

tions in the basin (e.g., Lake Erie lake trout, burbot,

and whitefish; Lake Superior siscowet lake trout).

Given the dearth of climate-related fisheries inves-

tigations in the Great Lakes, reliable predictions of the

future of fish population demographics, fish commu-

nity composition, and fisheries production are specu-

lative at best. Compounding this uncertainty is a lack

of understanding as to how other anthropogenic

stressors, both planned (e.g., harvest, stocking) and

unplanned (e.g., invasive species, eutrophication), will

interact with climate change to affect the ecosystems

of the Great Lakes and the fisheries that they support.

This collective lack of understanding should be

recognized and rectified, as numerous examples from

marine ecosystems have shown that climate change

has already begun to cause population declines (e.g.,

Portner and Knust 2007), shifts in species distributions
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(e.g., Perry et al. 2005), and fluctuations in fisheries

production (e.g., Southward et al. 1988). We suspect

that Great Lakes fish populations also have begun to

respond to climate change, given the many docu-

mented changes in temperature, precipitation, and

aquatic habitat in the Great Lakes, as well as the

likelihood that climate-induced change would be

faster in the smaller Great Lakes than in large marine

environments (Adrian et al. 2009; Schindler 2009;

Williamson et al. 2009). In support of this notion,

Farmer et al. (2015) used long-term agency assess-

ment data, field-based sampling, and a controlled

laboratory experiment to show how winter warming

may have contributed to failed yellow perch recruit-

ment events in Lake Erie during the past four years,

through effects on reproduction. Because of the high

degree of climate-driven synchrony that has been

demonstrated in Great Lakes yellow perch (Honsey

et al. 2016) and bloater (Bunnell et al. 2010) popula-

tions, and even synchrony across multiple fish species

in Lake Michigan (Bunnell et al. 2016), we strongly

support the call by others (e.g., Ludsin et al. 2014;

DeVanna-Fussell et al. 2016) for expanding long-term

monitoring of these ecosystems, as well as for

additional modeling and experimental research inves-

tigations that test effects of climate change in combi-

nation with other anthropogenic stressors.

While most Great Lakes fishery management

agencies acknowledge that climate change is a threat,

the published research indicates that most of the

funded research and monitoring has largely ignored

human-driven stresses (excepting harvest and stock-

ing) or has focused on other human-driven stressors,

such as invasive species and eutrophication. Expan-

sion of monitoring and research to consider the

stresses of climate change, along with these better-

studied stressors, should offer managers the best

opportunity to keep the valuable Great Lakes fisheries

sustainable in the face of continued human-driven

changes.
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