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Methods for predicting streamflow in areas with limited or nonexistent measures of hydrologic response
commonly rely on regionalization techniques, where knowledge pertaining to gauged watersheds is
transferred to ungauged watersheds. Hydrologic response indices have frequently been employed in con-
temporary regionalization research related to predictions in ungauged basins. In this study, we developed
regionalization models using multiple linear regression and regression tree analysis to derive relation-
ships between hydrologic response and watershed physical characteristics for 163 watersheds in the
Great Lakes basin. These models provide an empirical means for simulating runoff in ungauged basins
at a monthly time step without implementation of a rainfall–runoff model. For the dependent variable
in these regression models, we used monthly runoff ratio as the indicator of hydrologic response and
defined it at two temporal scales: (1) treating all monthly runoff ratios as individual observations, and
(2) using the mean of these monthly runoff ratios for each watershed as a representative observation.
Application of the models to 62 validation watersheds throughout the Great Lakes basin indicated that
model simulations were far more sensitive to the temporal characterization of hydrologic response than
to the type of regression technique employed, and that models conditioned on individual monthly runoff
ratios (rather than long term mean values) performed better. This finding is important in light of the
increased usage of hydrologic response indices in recent regionalization studies. Models using individual
observations for the dependent variable generally simulated monthly runoff with reasonable skill in the
validation watersheds (median Nash–Sutcliffe efficiency = 0.53, median R2 = 0.66, median magnitude of
the deviation of runoff volume = 13%). These results suggest the viability of empirical approaches to
simulate runoff in ungauged basins. This finding is significant given the many regions of the world with
sparse gauging networks and limited resources for gathering the field data required to calibrate rainfall–
runoff models.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Predictions in ungauged basins

Addressing water quantity and quality issues is possible in
gauged basins using rainfall–runoff models calibrated to stream-
flow observations. The need to address these issues over spatial
domains with limited or nonexistent stream gauge observation
networks motivated the International Association of Hydrological
Sciences Prediction in Ungauged Basins (PUB) Initiative (Sivapalan
et al., 2003; Hrachowitz et al., 2013). While PUB research is
typically conducted at local or regional scales, the challenges of
understanding hydrological processes in data sparse locations are
global. In fact, the least developed gauging networks are generally
found in those regions most susceptible to hydrologic impacts from
expanding populations and changes in land use and climate
(Sivapalan et al., 2003).

Traditional approaches to the PUB problem involve determining
an appropriate parameter set for a rainfall–runoff model structure
for application in the ungauged basin. Without the aid of stream-
flow observations for estimating these parameters, PUB research
commonly employs regionalization techniques to establish rela-
tionships between gauged and ungauged watersheds (Vogel,
2006; Wagener et al., 2004). A variety of regionalization
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approaches have been developed for estimating parameter sets at
ungauged sites. For example, a parameter set may be inferred for
an ungauged watershed based on its spatial proximity or physical
similarity to gauged watersheds (McIntyre et al., 2005; Nijssen
et al., 2001; Parajka et al., 2005; Reichl et al., 2009). Alternatively,
parameter sets may be estimated at the ungauged site based on
statistical relationships between calibrated parameters and
watershed physical characteristics (Abdulla and Lettenmaier,
1997; Post, 2009; Post and Jakeman, 1999; Sefton and Howarth,
1998; Seibert, 1999). Frequently, these regionalization approaches
are explored in tandem (Kokkonen et al., 2003; Merz and Blöschl,
2004; Samuel et al., 2011).

Regionalization techniques tied to rainfall–runoff model struc-
tures have been met with a variety of practical and theoretical
challenges. For example, the suitability of a regionalization
approach is both location specific (Bao et al., 2012; Beven, 2000;
Oudin et al., 2008; Wagener and Wheater, 2006) and rainfall–run-
off model specific (Bárdossy, 2007; Beven, 2006; Kay et al., 2006).
In response to the uncertainties introduced in model-dependent
regionalization approaches, recent studies developed regionaliza-
tion schemes that are model-independent (that is, they can be
applied to any rainfall–runoff model). Wagener and Montanari
(2011) review emerging methods wherein model-independent
measures of hydrologic response in gauged watersheds (rather
than direct streamflow observations) are employed to establish a
regionalization scheme. A wealth of indices has been derived to
implicitly quantify these processes (Olden and Poff, 2003). Exam-
ples include watershed input–output relationships (e.g. runoff
ratio), hydrograph analytics (e.g. rising limb density) and metrics
characterizing the magnitude, frequency, duration and timing of
flow events (e.g. baseflow index and flood frequency).

Yadav et al. (2007) presented a rainfall–runoff model-indepen-
dent approach to making predictions in ungauged basins based on
empirical relationships between watershed physical characteris-
tics and a variety of hydrologic response indices. Three response
indices (runoff ratio, high pulse count, and the slope of the flow
duration curve) were shown to be useful for constraining ensemble
predictions at ungauged sites. Shamir et al. (2005) developed two
hydrograph-based response indices (rising and declining limb den-
sity) to improve the identification of optimal parameters for a pro-
cess-based rainfall–runoff model; a case study employing this
method indicated improved model reliability and predictive skill.
Sawicz et al. (2011) developed a classification scheme for water-
sheds in the eastern U.S. that incorporated six hydrologic response
indices observed to vary along a climate gradient: runoff ratio,
baseflow index, snow day ratio, slope of the flow duration curve,
streamflow elasticity, and the rising limb density.

Relationships between hydrologic response indices and
watershed physical characteristics are typically used to provide
ancillary information for rainfall–runoff modeling. For example,
Bulygina et al. (2009) used this information to constrain the range
of allowable values for model parameters. Alternatively, this infor-
mation can be used to develop an ensemble of predictions based on
the likelihoods of candidate models (McIntyre et al., 2005; Reichl
et al., 2009). Finally, some hydrologic response indices (e.g. runoff
ratio) can be applied directly to simulate runoff in ungauged
watersheds, as is demonstrated in this study. This approach is rain-
fall–runoff model-independent in the sense that a process-based
model is not implemented.

Hydrologic response indices have traditionally been developed
to describe a watershed’s typical behavior over a given period of
time. For example, runoff ratio, also referred to as runoff yield, is
a dimensionless index obtained by dividing total basin runoff by
total basin precipitation over an equivalent time period. Yadav
et al. (2007) defined runoff ratio as average annual runoff divided
by average annual precipitation. Berger and Entekhabi (2001)
and Sawicz et al. (2011) defined it more generally as the ratio of
long-term runoff to long-term precipitation. Similarly, nearly all
of the 171 response indices reviewed by Olden and Poff (2003)
are derived as long-term mean values, representing the average
watershed behavior over a given time period. Moreover, despite
the fact that hydrologic response can exhibit substantial seasonal
variability (see Section 4), runoff ratio has typically been defined
at an annual time step. As a result, contemporary research utilizing
hydrologic response indices has addressed the spatial, but not tem-
poral, variability in watershed behavior.

This research gap is addressed by developing and regionalizing
two different temporal characterizations of runoff ratio at a
monthly time step, addressing the research question of how both
interannual and seasonal temporal variability in hydrologic
response affects predictions in ungauged basins. Specifically, the
objectives of this study are to:

� Develop regression-based regionalization models between
watershed physical characteristics and monthly runoff
ratio as an index of hydrologic response.

� Use the models to simulate streamflow in ungauged basins
at a monthly time scale without implementation of a rain-
fall–runoff model.

� Illustrate the effects of defining hydrologic response at dif-
ferent temporal scales (long-term average versus short-
term indices) in terms of model skill and applicability to
water resource management objectives.

� Assess the potential for regression tree models for hydro-
logic modeling alongside a commonly used multiple linear
regression model.

1.2. Hydrologic modeling in the Great Lakes basin

We address our research objectives in the Great Lakes basin.
The Great Lakes basin (Fig. 1) drains over half a million square kilo-
meters of land in the United States and Canada featuring varied
land cover, climate, subsurface characteristics, and human activity.
Fig. 1 shows dominant land cover type throughout the basin by U.S.
Geological Survey (USGS) 12-digit hydrologic unit code (HUC12)
delineations (USGS, 2012). The basin is home to over 30 million
residents, many of whom live in highly urbanized areas adjacent
to the lakes. Temperature and precipitation variability is a function
of both latitudinal and lake effects (Choi et al., 2012; Norton and
Bolsenga, 1993). Significantly different subsurface properties exist
throughout the basin as a result of the geologic formation of the
Great Lakes. At the scale of the Great Lakes basin, this variability
results in a wide range of potential hydrologic response among
watersheds, both gauged and ungauged.

Predictions in ungauged portions of the Great Lakes basin are
essential for research and management objectives related to the
effects of land use/land cover change on near-shore ecosystems
(Wolter et al., 2006); nonpoint source pollution loadings (He and
DeMarchi, 2010); net water supply availability for irrigation,
hydropower, and human consumption (Changnon, 1987; He,
1997), and lake level forecasting to support the needs of transpor-
tation and recreation industries (Gronewold et al., 2011; Lee et al.,
1997). In recent years, the need to reduce uncertainty in each of
the components of the Great Lakes basin water budget has become
increasingly clear due to dramatic changes in water level dynamics
(Gronewold and Stow, 2014). Complete spatial coverage of runoff
estimates throughout the Great Lakes basin is critical for preparing
reliable water level forecasts and for understanding the mecha-
nisms involved in fluctuating water levels. A number of recent
workshops and regional studies have resulted in recommendations
to improve basin-wide runoff estimates (Coon et al., 2011; Fry
et al., 2013; Gronewold and Fortin, 2012; Gronewold et al., 2011).



Fig. 1. The Great Lakes basin study area. USGS HUC12 delineations (USGS, 2012) are colored according to dominant land cover type based on classifications from the 2006
National Land Cover Dataset (Fry et al., 2011).
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As a study area, the Great Lakes basin poses unique challenges
for making predictions in ungauged watersheds. For example,
there is a clear siting bias in the U.S. stream gauge network, with
coastal areas primarily ungauged and inland areas predominantly
gauged (see Fig. 2). Moreover, due to its large size and transna-
tional data coordination efforts, many models have been applied
within the Great Lakes basin to individual tributaries or portions
of the basin within national boundaries, but few estimates of run-
off to the entire system exist (Coon et al., 2011).

Basinwide products include the lumped conceptual Large Basin
Runoff Model (LBRM) developed by the National Oceanic and
Atmospheric Administration’s Great Lakes Environmental Research
Laboratory (NOAA-GLERL; Croley and Hartmann, 1986) and the dis-
tributed physical Modeling Environment Community Surface
Hydrological (MESH) model developed by Environment Canada
(Pietroniro et al., 2007). LBRM and MESH are rainfall–runoff models
and therefore subject to the complications and limitations discussed
above.

An alternate regionalization approach involving a simple area
ratio method (ARM) has been an important component of Great
Lakes regional hydrologic research for several decades (Croley
and Hartmann, 1986; Fry et al., 2013). As implemented by
NOAA-GLERL, the ARM identifies the most downstream gauge(s)
for each of 121 subbasins spanning the Great Lakes basin and
extrapolates streamflow from gauged to ungauged regions based
on the ratio of gauged to total subbasin drainage area. Advantages
of the ARM include the high temporal resolution of the data (daily
streamflow observations) as well as computational and conceptual
simplicity. The primary disadvantage of the area ratio approach lies
in its assumption of spatial homogeneity among the watershed
physical characteristics influencing hydrologic response. Both the
ARM and the models developed in this study involve regionaliza-
tion of hydrologic response (streamflow and runoff ratio,
respectively), resulting in empirical rather than conceptual or
physically based rainfall–runoff models.
2. Data and methods

2.1. Watershed physical characteristics

The regionalization models developed in this study take into
account the spatial heterogeneity of watershed physical character-
istics not explicitly accounted for by the area ratio method.
Watershed physical characteristics were obtained from the Geo-
spatial Attributes of Gages for Evaluating Streamflow (GAGES-II)
dataset (USGS, 2011). The geospatial data contained in GAGES-II
include several hundred variables related to climate (long-term
average monthly or annual), soils, land cover, topography, geomor-
phology, and anthropogenic modifications for 450 gauged water-
sheds within the Great Lakes basin. Criteria for inclusion in the
GAGES-II dataset were gauges with at least 20 complete years of
daily discharge records since 1950, or currently active gauges as
of water year (WY) 2009.

In GAGES-II, land cover variables are derived from the 2006
National Land Cover Dataset (NLCD) and soils variables from the
State Soil Geographic (STATSGO) database. A wide range of vari-
ables describing watershed geomorphology, hydrology, and topog-
raphy are derived from national hydrography and Digital Elevation
Model datasets.

Climate variables within the GAGES-II dataset are derived from
PRISM Climate Group datasets. Percent snow is defined as the ratio
of annual snow water equivalent to annual precipitation, thus serv-
ing as proxy to seasonal snowpack accumulation and ablation pro-
cesses. The precipitation seasonality index ranges from zero to one,
with higher values indicating higher seasonality of precipitation.

Additional derivations and sources of variables in Table 1 are
documented in detail by USGS (2011). The two exceptions are (1)
a monthly wetness index computed as the ratio between monthly
precipitation and potential evapotranspiration, and (2) the Stan-
dardized Precipitation-Evapotranspiration Index (SPEI) developed
by Vicente-Serrano et al. (2010). Both the wetness index and SPEI



Fig. 2. Seasonal and spatial variability of monthly runoff ratio in the Great Lakes basin. The 163 watersheds used in this study are shown as circles graduated according to
drainage area. Solid-colored polygons show the largest of any nested watersheds. Yellow areas represent watersheds with historically limited or nonexistent streamflow
records. There is a clear siting bias in the region, with near-shore catchments almost exclusively ungauged. Quartiles of MRRm are mapped for (a) April and (b) October. Note
the sizable difference in the range of values between the spring and autumn months. The inset shown in Fig. 2a is discussed in Section 4.
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were calculated in R using the SPEI package. The wetness index
and SPEI both characterize water balance surplus-deficit
conditions by month. SPEI additionally considers surplus-deficit
conditions from prior months in its derivation. The variables
percent snow, precipitation seasonality index, wetness index,
and SPEI are included as attempts to address seasonal water
balance dynamics obscured by binning precipitation and runoff
by month.

Table 1 lists all watershed physical characteristics from GAGES-
II considered for inclusion in the regionalization models. To
develop the models, 12 variables (highlighted in grey in Table 1)
were retained based on:



Table 1
Watershed physical characteristics considered for inclusion in the regionalization schemes. Variables contributing to monthly multiple
linear regression models at the p < 0.05 significance level are denoted with circles. Filled and hollow circles refer to the MRRi and MRRm

temporal characterizations, respectively (see Table 2). The characteristics highlighted in grey were retained for developing the
regionalization schemes based on the criteria in Section 2.1.

a From GAGES-II dataset (USGS, 2011).
b Standardized precipitation evapotranspiration index (Vicente-Serrano et al. (2010)).
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� Variable significance at the p < 0.05 level over most of the
year based on a preliminary assessment by fitting monthly
linear regression models.
� An attempt to achieve minimal redundancy among vari-
ables (colinearity), informed by assessing Pearson correla-
tion coefficients (results not shown).



Table 2
Definition and description of monthly runoff ratio (MRR) at two temporal scales. The block labeled ‘‘Potential management applications’’ spanning both temporal scales lists
research and management objectives for which the selection of the temporal characterization of hydrologic response should be considered carefully.

Monthly runoff ra�o (MRR) 
temporal characteriza�on

MRR deriva�on

MRR contribu�on to model

Interpreta�on of independent 
variable for modeling

Poten�al management 
applica�ons

Short-term lake level forecasts; 
extreme/rare event predic�ons of 

monthly runoff or lake levels

Long-term lake level forecasts; 
beach and recrea�onal areas 

management

Perceived limita�ons

Usage in contemporary PUB 
research

Rarely used in PUB research

MRRm

Mean of MRRi values

A single mean MRR contributes to the model

Average watershed hydrologic response

Knowledge of model uncertainty may be insufficient for sensi�ve 
applica�ons or use with calibra�ng rainfall-runoff models

Frequently used: hydrologic response indices are typically             
based on long-term averages of their parameters

Near-shore wetland habitats, freight traffic, hydropower poten�al, 
municipal and agricultural consump�on, synthe�c runoff series for 

calibra�ng hydrologic models

MRRi

Monthly runoff ra�os computed for each year in WY 1981-2010

Each observed MRR contributes to the model

Full variability of watershed hydrologic response

Poten�al for overly conserva�ve management decisions
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� Representation of climate, soils, land cover, topography and
geomorphology variables.

� Availability of data with complete spatial coverage over the
U.S. portion of the Great Lakes basin.

2.2. Monthly runoff ratio (MRR)

Daily USGS streamflow observations and NOAA precipitation
data for each watershed were obtained from NOAA-GLERL. Daily
areal precipitation for each watershed was estimated by kriging
point observations from the precipitation gauging network in the
GLERL Hydrometeorological Database (see Hunter and Croley
(1993) for details on the gauge network used). Daily streamflow
and precipitation data were aggregated by month for computing
monthly runoff ratio.

Monthly runoff ratio (monthly runoff divided by monthly pre-
cipitation) was calculated for the 163 Great Lakes basin watersheds
in the GAGES-II dataset with continuous flow records for water
years (WY) 1981–2010. As the dependent variable in our regres-
sion models, we calculated monthly runoff ratio at two temporal
scales: (1) treating all monthly runoff ratios as individual observa-
tions (MRRi), and (2) using the mean of these monthly runoff ratios
for each watershed as a representative observation (MRRm). Table 2
summarizes the distinctions between the two temporal character-
izations of runoff ratio, including potential management applica-
tions and perceived limitations of each. The last row in the table
recalls the fact that long-term averages of hydrologic response
have dominated contemporary PUB-related research. Runoff ratios
were log transformed prior to developing the regression relation-
ships in order to linearize the input for the regression models, as
well as prevent the possibility of negative runoff simulations by
the models.

2.3. Model development and validation

Two regionalization models, multiple linear regression and
regression tree, were developed and implemented in the R soft-
ware package (R Development Core Team, 2011) to relate MRRi

(or MRRm) with watershed physical characteristics. The multiple
linear regression model was of the form

y ¼ b0 þ b1x1 þ b2x2 þ :::þ bnxn þ e ð1Þ

where the response variable, y, was monthly runoff ratio and the
explanatory variables, x, were the n = 12 watershed physical
characteristics highlighted in Table 1. Regression coefficients are
denoted by the b terms, while e is an error term, or residual,
representing the difference between modeled and actual runoff
ratio values.

Regression tree models have previously been used in regionali-
zation studies. For example, regression trees have been used to
extrapolate water quality data from monitored to unmonitored
streams (Robertson and Saad, 2003), group catchments to predict
low flow (Laaha and Blöschl, 2006), classify catchments according
to flow regimes (Snelder et al., 2009), and identify drivers of hydro-
logical response within a region (Ali et al., 2010). Regression tree
routines in package rpart (Therneau and Atkinson, 1997) are
based largely on the Classification and Regression Tree methodol-
ogy of Breiman et al. (1984). Trees in rpart are grown so as to
maximize differences in watershed characteristics at each branch-
ing in a simple analysis of variance. The resulting trees are then
pruned to minimize the risk of misclassifying an observation while
avoiding excessive model complexity or overfitting.

For our models, pruning was based on a threshold of 0.01 for the
reduction in error from a leave-one-out cross-validation. For our
experimental design, we considered it important for a single
threshold to be used consistently for all models. The threshold of
0.01 was based on trial and error, and multiple thresholds were
tested and considered. Thresholds less than 0.01 generally led to
insignificant model improvements at the cost of increased model
complexity. Based on tests using thresholds greater than 0.01, we
judged that the improvement in model skill warranted the out-
come of slightly more complex models.

The outputs from the regression tree analyses in rpart are
monthly decision trees, with binary splits based on values of
watershed physical characteristics, and terminal nodes grouping
the 163 gauged watersheds into clusters (ideally) exhibiting simi-
lar hydrologic response. From the PUB perspective, rpart can then
assign cluster membership to an ungauged watershed based on its
physical characteristics. As a decision tree technique, there is no
general equation to describe the regression tree process.

The four models (multiple linear regression and regression tree,
conditioned by both MRRi and MRRm) were then used to simulate
monthly runoff at 62 validation gauges (Fig. 4). Validation gauges
included all USGS gauges for which continuous discharge observa-
tions were available for WY 2001–2010, but not WY 1981–2010, so
there would be no overlap with the 163 gauges used for model
development. Data for the validation watersheds were also
obtained from the GAGES-II dataset. None of the validation water-
sheds were among the 163 watersheds used to develop the models.

The Nash–Sutcliffe coefficient of efficiency (NSE) (Nash and
Sutcliffe, 1970), the coefficient of determination (R2), mean
absolute error (MAE), and deviation of runoff volumes (Dv) were



Table 3
Performance ratings for model validation statistics from Moriasi et al. (2007).

Rating NSE Dv

Very good 0.75 < NSE 6 1.00 |Dv| < 10
Good 0.65 < NSE < 0.75 10 6 |Dv| < 15
Satisfactory 0.50 < NSE < 0.65 15 6 |Dv| < 25
Unsatisfactory NSE 6 0.50 |Dv| P 25
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computed to compare monthly simulated runoff (P) versus
monthly observed runoff (O) in validation watersheds for all
months i during WY 2001–2010 (n = 120). NSE (Eq. (2)) and R2

(Eq. (3)) are goodness-of-fit statistics; MAE (Eq. (4)) quantifies
error in units of mm of runoff; and Dv (Eq. (5)) assesses model bias
in terms of total cumulative runoff.

NSE ¼ 1�
Pn

i¼1ðOi � PiÞ2Pn
i¼1ðOi � OÞ2

ð2Þ
R2 ¼
Pn

i¼1ðOi � OÞðPi � PÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðOi � OÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðPi � PÞ2

q

2
64

3
75

2

ð3Þ
MAE ¼ 1
n

Xn

i¼1
jOi � Pij ð4Þ
Dv ¼
Pn

i¼1ðPi � OiÞPn
i¼1Oi

� 100 ð5Þ

For the NSE and R2 statistics, values of one indicate a perfect
model fit, where simulated runoff is equal to observed runoff. For
Dv, a value of zero implies no model bias, where cumulative simu-
lated and observed runoff (here, for WY 2001–2010) are equal.
MAE quantifies the difference between observed and simulated
values in actual units, in this case millimeters of runoff. Values clo-
ser to zero indicate a better model fit. The performance ratings for
NSE and Dv suggested by Moriasi et al. (2007), shown in Table 3,
were used to evaluate model skill. Since R2 is highly sensitive to
Fig. 3. Seasonal and interannual variability of hydrologic response in the Great Lakes
temporal scales (see Table 2). MRRi values (left panel) are monthly observations duri
observations from WY 1981 to 2010 (n = 163). Runoff ratios greater than one indicate
autumn months, but prevalent during winter and early spring months in response to sn
outliers, Moriasi et al. (2007) do not provide performance ratings
for this statistic, but consider a value greater than 0.50 to generally
be acceptable.

We evaluate the effect of spatial aggregation by evaluating the
goodness of fit statistics for the sum of discharge simulations at all
62 gauges compared with the sum of discharge observations at
those gauges. Additionally, we investigate the influence of elapsed
time on model skill by evaluating goodness of fit statistics over
elapsed time, similar to methods described by Valipour et al.
(2013).

3. Results

Figs. 2 and 3 illustrate the spatial and temporal variability of
monthly runoff ratio in the U.S. portion of the Great Lakes basin.
Fig. 2 depicts 30-year mean monthly runoff ratios (MRRm) for April
and October for the 163 gauged watersheds used to develop the
regionalization models. Watersheds are shown as point symbols
graduated by drainage area, with the largest of any nested water-
sheds shown as polygons. Note the different ranges for MRRm,
symbolized by quartiles, between April and October, which are
typically high and low flow periods, respectively.

Spatial trends include very high April runoff ratios in northern
Michigan and western New York. Both regions frequently receive
large amounts of snow throughout the winter due to lake effect
processes, resulting in April runoff volumes that are much greater
than April precipitation volumes due to melting of the snowpack.
In contrast, very low October runoff ratios are observed throughout
the predominantly agricultural regions of eastern Michigan and
northern Ohio, where most incoming precipitation is subsumed
by plants and soils.

Beyond these few instances, however, there is limited potential
for generalizing hydrologic response solely by geographic regions.
Throughout most of the Great Lakes basin, widely differing runoff
ratios exist between spatially proximal watersheds, for example
in northern Wisconsin and northern Michigan where MRRm ranged
from 0.25 to 1.95. This area is shown in the inset in Fig. 2a. Climatic
factors are largely constant at this spatial scale, and the differences
in dominant land cover shown in Fig. 1 do not appear to
correspond to the observed differences in runoff ratio. Additionally,
there is no apparent relationship between these differences in
basin. Observed monthly runoff ratios for 163 watersheds were calculated at two
ng WY 2001–2010 (n = 1630). MRRm values (right panel) are long-term means of
a net monthly watershed surplus. Surplus conditions are rare during summer and
owpack accumulation and ablation processes.
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hydrologic response and the soils characteristics used in our
regression models. However, these characteristics are average val-
ues aggregated by watershed, and soil characteristics vary consid-
erably over space in this area due to the glacial history of the
region. In addition, there are 60 major dams (per the GAGES-II
dataset) along the rivers in these watersheds, and these flow
impediments may influence streamflow observations binned at a
monthly time step. Our analysis did not identify the influence of
dams on the success of the models; future work should investigate
the sensitivity of both the models to the presence of dams by
developing the models in unaffected watersheds separately.

Fig. 3 presents the full range of seasonal and interannual
variability in observed MRRi (left panel) and MRRm (right panel).
Substantial seasonal variability is evident in Fig. 3, with higher
magnitudes and larger ranges for runoff ratio during winter and
early spring compared to summer months. In Fig. 3, values greater
than one indicate monthly watershed surpluses. Surpluses are
common during winter and early spring months throughout the
basin due to snowpack accumulation and ablation processes as
well as minimal evapotranspiration and high soil water content
at this time of year. On the other hand, surpluses are rare during
summer and autumn months due to high levels of evapotranspira-
tion and low soil water content.

The different distributions of MRRi and MRRm indicate the
degree of interannual variability in hydrologic response among
watersheds spanning the Great Lakes basin. While the median
values for both temporal characterizations are similar, the
Fig. 4. Deviation of runoff volumes (Dv) are shown for the 62 GAGES-II watersheds used
graduated according to drainage area. Solid-colored polygons show the largest of any
predicted. Negative Dv values indicate that cumulative runoff was under-predicted. The d
the five validation watershed used for hydrograph comparison in Fig. 6 are shown in ca
interquartile ranges are very different, particularly during winter
and spring months. As a result, for management objectives related
to the magnitude and timing of high flow events (e.g. potential
floods) in ungauged areas, regionalization schemes based on
long-term or annual averages may not be suitable.

The 62 validation watersheds are shown in Fig. 4, symbolized
according to the deviation of runoff volumes (Dv) for WY 2001–
2010. Cumulative runoff was over-predicted in watersheds with
a positive Dv and under-predicted in watersheds with a negative
Dv. The distributions of Dv statistics are shown as boxplots. Runoff
was generally over-predicted (median Dv � 10%) with the MRRm

temporal characterization and under-predicted (median Dv � �5%)
with the MRRi temporal characterization.

In some regions, runoff is over- or under-predicted regardless of
the model used, such as in western New York and central Michi-
gan. In these cases, there appears to be a relationship between
watershed drainage area and model bias, where larger watersheds
typically over-predict cumulative runoff, and smaller watersheds
under-predict cumulative runoff. As shown in Table 1, drainage
area rarely exhibited a significant linear relationship with runoff
ratio. Using the nonlinear, regression tree approach, total drainage
area only appeared as a factor in one of the monthly decision trees
conditioned on MRRi and three of the monthly decision trees con-
ditioned on MRRm. These results, combined with the observations
in Fig. 4, suggest that neither of the regression approaches used in
this study fully incorporated the influence of total drainage area on
streamflow discharge.
to validate the linear and rpart models. Validation watersheds are shown as circles
nested watersheds. Positive Dv values indicate that cumulative runoff was over-

istributions of Dv statistics for each model are shown as boxplots. The river names of
llout boxes.



Fig. 5. Nash–Sutcliffe coefficient of efficiency (NSE; top panel) and coefficient of determination (R2; middle panel) goodness-of-fit statistics for the 62 validation watersheds.
Mean absolute error (MAE) in mm of runoff is given in the bottom panel.

2232 J.M. Kult et al. / Journal of Hydrology 519 (2014) 2224–2237
In other regions, however, the bias depends on the model used,
such as in northern Wisconsin and southern Michigan. While the
multiple linear regression model included all 12 variables
highlighted in Table 1, the regression tree models only included
variables deemed important at the scale of the entire Great Lakes
basin. Consequently, variables important at more local scales
may not have been included in the regression tree models. For
example, the percent of precipitation falling as snow and the per-
cent of agricultural land distinguish northern Wisconsin (higher
latitude, largely forested) from southern Michigan (lower latitude,
largely agricultural). While these watershed physical characteris-
tics have implications for hydrologic response throughout the year,
the percent snow variable appeared as a factor in only four of the
monthly decision trees conditioned on MRRi and three of the
monthly decision trees conditioned on MRRm, while the percent
agricultural land variable appeared as a factor in only six of the
monthly decision trees conditioned on MRRi and seven of the
monthly decision trees conditioned on MRRm. These results attest
to the challenges of regionalizing hydrologic response over large
spatial domains containing substantially different watershed
physical characteristics at smaller scales of analysis.

The NSE, R2, and MAE statistics are given as boxplots in Fig. 5.
Multiple linear regression using mean runoff ratios performed
poorly, while both regression approaches using MRRi performed
fairly well. The multiple linear regression and regression tree mod-
els using the MRRi configuration resulted in median NSE values of
0.52 (range �0.45 to 0.79) and 0.54 (range �0.63 to 0.79). These
values compare relatively well with models that were evaluated
for gauges as part of the Great Lakes Runoff Intercomparison Pro-
ject, for which non-assimilative models (i.e. those that did not
incorporate discharge observations into simulations) resulted in
median NSE values as good as 0.53 for 17 gauges in the Lake Mich-
igan basin (Fry et al., 2014). Multiple linear regression using MRRi

resulted in the smallest interquartile range for both goodness-of-fit
statistics, and was the only model with no NSE values less than
zero (that is, higher variance in the model’s residuals than in the
observed data). The lowest mean absolute errors (in mm of runoff)
were produced using the MRRi temporal characterization of hydro-
logic response.

Based on these metrics, model skill was higher for the MRRi

models than for the MRRm models, suggesting that the regression
models were improved by incorporating the interannual variability
of hydrologic response over using long-term average hydrologic
response. Additionally, Fig. 5 shows that model simulations were
far more sensitive to the temporal characterization of runoff ratio
than to the type of regression technique used to develop the
relationships.

Hydrographs of model-simulated versus observed runoff are
shown in Fig. 6 for five contrasting validation watersheds spanning
the Great Lakes basin. Summary descriptions of these watersheds
are given in Table 4 and their locations shown in the upper left
panel of Fig. 4. In Fig. 6, blue lines show observed runoff, while
black and red lines show runoff simulated with the MRRi and
MRRm temporal characterizations, respectively. Solid lines display
simulations from the multiple linear regression approach, while
dotted lines display simulations from the regression tree approach.

Comparing the top two hydrographs in Fig. 6, the Montreal
River exhibits an annual cycle that is consistent from year to year,
while the Sandusky River hydrograph appears more erratic, with a
less apparent annual cycle. Some basic relationships can be
inferred between streamflow regimes and watershed physical
characteristics, specifically the percent precipitation falling as
snow and land cover type. In the Montreal River watershed, the
consistent annual cycle (i.e. strong peaks in the spring and low flow
in the summer and fall) is attributable to (a) colder winters with
solid precipitation that does not immediately appear as runoff
but instead results in very high flow in the spring months, and
(b) lack of impervious surfaces and agricultural areas that would
increase high flows and reduce low flows in times with liquid pre-
cipitation and reduce the amount of infiltration of melting snow
during spring months. On the other hand, hydrograph peaks are
observed throughout the year in the Sandusky River watershed.
In the Sandusky River watershed, warmer average annual temper-
atures translate to less snowpack storage potential, and runoff
peaks occur following precipitation events during the winter. In
summer, hydrograph peaks for the Sandusky River can be attrib-
uted to fast runoff from agricultural and developed land cover.

Model bias varies considerably among the five watersheds in
Fig. 6. For all models, there is a recurring bias in late winter and
early spring with runoff consistently under-predicted for Montreal
River and over-predicted for Irondequoit Creek. For Sandusky
River, numerous high runoff events in both winter and summer
are under-predicted by all models. For Mill Creek and Saginaw
River, the models conditioned on mean runoff ratio (MRRm),



Fig. 6. Model-simulated versus observed monthly runoff (in mm) for five validation watersheds during WY 2001–2010. The blue line represents observed runoff. Black and
red lines represent the MRRi and MRRm temporal characterizations, respectively. Solid and dashed lines represent the linear and rpart models, respectively. January is
indicated with the large tick marks on the x-axis.

Table 4
Characteristics of validation watersheds used for hydrograph comparison in Fig. 6.

Watershed Area (km2) Dominant land cover Mean annual runoff (m3/s) Mean annual precip. (mm) Average annual temp. (�C)

Montreal River, WI 684 Forest (59%) Wetlands (23%) 8.9 852 4.8
Sandusky River, OH 231 Agriculture (70%) Developed (15%) 2.6 1059 10.0
Mill Creek, MI 326 Agriculture (51%) Forest (19%) 2.4 885 9.2
Saginaw River, MI 14,327 Agriculture (45%) Forest (24%) 132.2 832 8.3
Irondequoit Creek, NY 380 Developed (38%) Agriculture (33%) 1.1 884 9.2

Table 5
Goodness of fit statistics for spatially aggregated discharge simulations (sum of
simulated monthly discharge for the 62 validation gauges compared to the sum of
observed monthly discharge over the same 62 gauges). The best value for each
goodness of fit statistic is highlighted in bold.

RSQ NSE Dv (%) MAE (cms)

MRRi (linear) 0.81 0.78 �0.1 4.71E+08
MRRm (linear) 0.42 �0.68 16.0 1.22E+09
MRRi (rpart) 0.83 0.81 �5.4 4.50E+08
MRRm (rpart) 0.71 0.58 5.5 6.61E+08
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particularly the linear model, greatly over-predicted monthly run-
off, even in months not experiencing relatively high flows.

To evaluate model skill under different hydrological conditions,
we evaluated the coefficient of determination (R2) at each valida-
tion gauge for months that generally have high flows (March, April,
and May) and for months with generally low flows (July, August,
and September). Interestingly, the two regression models
performed differently under different flow regimes. Both multiple
linear regression models resulted in better R2 values during
months with low flows than during months with high flows for
the majority of validation gauges. The median improvement in R2

values for low flow periods over high flow periods was 0.11 (range
�0.31 to 0.53) and 0.22 (�0.53 to 0.62) for the MRRi and MRRm

configurations of the multiple linear regression models, respec-
tively. On the other hand, performance was slightly worse for
low flow periods than for high flow periods for the regression tree
models. The median improvement in R2 values for high flow peri-
ods over low flow periods was 0.07 (range �0.29 to 0.56) and 0.02
(�0.27 to 0.57) for the MRRi and MRRm configurations of the
regression tree models, respectively.

The goodness of fit statistics for spatially aggregated discharge
simulations (i.e. the sum of simulated volumetric discharge over
the 62 validation gauges compared with the sum of observed
volumetric discharge over the 62 gauges) are shown in Table 5.
For spatially aggregated simulations, the models conditioned on
individual month-year combinations (MRRi) result in the best
goodness of fit statistics. This relative difference in skill among



Fig. 7. Goodness of fit statistics over elapsed simulation time for the spatially aggregated discharge simulations, starting October 2001. Statistics are estimated for the sum of
the simulated monthly discharge over the 62 validation gauges compared with the sum of the observed monthly discharge over the same 62 gauges.
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models was consistent over elapsed time, as shown in Fig. 7. Fig. 7
also provides an indication of variations in skill over elapsed time.
For all models, the goodness of fit metrics stabilize after simula-
tions of about 20 months, with the exception of the linear regres-
sion model conditioned to MRRm, whose skill appears to
gradually decrease following an initial improvement.

4. Discussion

Numerous water resource research and management objectives
require knowledge of hydrological processes occurring in ungauged
watersheds. Making predictions in ungauged basins through region-
alization addresses theoretical and practical means of (1) transfer-
ring knowledge of hydrological processes over space from gauged
to ungauged watersheds; (2) determining similarities and differ-
ences among watersheds, including attempts to establish watershed
classification systems; and (3) understanding and accounting for the
temporal variability exhibited by hydrologic systems. A great deal of
research has been directed towards the first two items. However,
regionalization approaches involving hydrologic response indices
have rarely accounted for the temporal variability of watershed
behavior. This study showed that different temporal characteriza-
tions of hydrologic response can result in substantially different
model-predicted runoff. Further advances in regionalization
research involving hydrologic response indices require the consider-
ation of their temporal as well as spatial variability.
In this research, four regionalization models (multiple linear
regression and regression tree, conditioned on both MRRi and
MRRm) were developed to simulate runoff at a monthly time step
based on watershed physical characteristics. Results from
applications to validation watersheds indicate that model simula-
tions were far more sensitive to the temporal characterization of
runoff ratio than to the type of regression technique used to
develop the relationships. Specifically, the two regionalization
schemes based on MRRi performed comparably well alongside
contemporary studies using response indices in conjunction with
a rainfall–runoff model (e.g. Bulygina et al., 2009; Yadav et al.,
2007). Moreover, simulations based on the MRRi index were
generally acceptable based on the performance ratings of Moriasi
et al. (2007).

However, mean monthly runoff ratio (MRRm) does not appear to
provide enough information about watershed behavior to be useful
for making predictions in ungauged basins. This conclusion mirrors
the opinion expressed by Olden and Poff (2003) that a single index
of hydrologic response is insufficient for characterizing the sea-
sonal and interannual variability of hydrologic systems. While
MRRm accounts for seasonal variations in hydrologic response
(the monthly time step), the MRRi characterization additionally
accounts for interannual variability (the inclusion of all observa-
tions over a range of years). This additional level of temporal char-
acterization likely explains the superior performance of MRRi

models compared to MRRm models.
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Compared to the contrasts exhibited by the temporal character-
izations of runoff ratio, there were no substantial differences found
between the multiple linear regression and regression tree tech-
niques used to develop the models. In other words, simulations
were not sensitive to the watershed classification technique
employed to determine hydrologic similarity. These results reflect
the contemporary challenges described by Wagener and Montanari
(2011) of determining hydrologic similarity among watersheds.

In this research, simulations of runoff in ungauged basins were
based solely on empirical relationships between a watershed’s
physical characteristics and observed hydrologic response. This
approach is distinct from the more commonly used regionalization
approaches that rely on conceptual or process-based rainfall–run-
off models to simulate runoff, for example the LBRM and MESH in
the Great Lakes basin (see Section 1.2). Whereas rainfall–runoff
models attempt to model specific hydrological processes occurring
in a watershed, the method presented in this study modeled the
watershed as a system, without explicitly modeling constituent
routing, storage, and loss processes.

An important result of this study is that monthly runoff can be
simulated with reasonable skill without recourse to a rainfall–run-
off model. This finding is particularly important considering the
many regions of the world with sparse stream gauge networks
and limited resources for gathering the large amounts of field data
required to calibrate a rainfall–runoff model. In such cases, the
approach used in this study may be viable for understanding and
simulating watershed behavior, particularly over large spatial
domains. Additionally, we found that when aggregated over space
and time, three of the four model configurations resulted in good
goodness of fit statistics after about 20 months of elapsed time,
with the exception being the multiple linear regression model con-
ditioned on long term average monthly runoff ratios.

The method used in this study is similar to the area ratio
method (ARM; see Section 1.2) in its empirical approach for simu-
lating runoff in ungauged watersheds. The primary advantage of
the ARM is its utilization of all available streamflow observations
at a daily time step. The advantage of the method used in this study
is its ability to account for spatial heterogeneity between gauged
and ungauged watersheds. Comparisons between these two
approaches would provide an opportunity to assess the signifi-
cance of this spatial heterogeneity, while an integration of these
two approaches could be developed as an improved alternative
to rainfall–runoff models.

Table 2 lists some common hydrology research and manage-
ment objectives in relation to the perceived appropriateness of
temporal scale. The following discussion considers a few of these
with examples from the Great Lakes basin.

Monthly forecasts of lake levels are important for transporta-
tion, water supply, near-shore habitats, and recreation (Section
1.2). In the Great Lakes basin, forecasts provided by the Advanced
Hydrologic Prediction System (Gronewold et al., 2011) require
monthly runoff predictions from all ungauged portions of the
basin. Although land surface runoff is a key component of the lakes’
water budget (and therefore water levels), estimation of the direct
impact on lake levels resulting from different methods of estimat-
ing runoff is outside the scope of this paper, because net basin sup-
ply requires knowledge of overlake precipitation and overlake
evapotranspiration (Gronewold et al., 2011).

The results of this study contribute important insights for
understanding and simulating the land surface runoff component
of the regional water budget. Specifically, regionalization schemes
based on different temporal characterizations of hydrologic
response resulted in substantially different monthly runoff simula-
tions. The MRRi characterization maintains the full variability of
observations and provides a realistic range of potential outcomes
that may be critical for transportation or near-shore habitat
functions. On the other hand, management decisions for recreation
or municipal water supply may be less sensitive to the prediction
of unusually high or low lake levels, and may be better informed
by predictions based on long-term averages. Management deci-
sions related to contaminant loadings, sediment transport, and irri-
gation availability require consideration of the tradeoffs presented
by these modeling alternatives.

Predictions in ungauged basins are also important for generat-
ing synthetic runoff time series for use in calibrating rainfall–run-
off models. For example, runoff predictions for the entire Great
Lakes basin using an area ratio method were used to calibrate
the Large Basin Runoff Model (LBRM; Section 1.2) (Croley and
Hartmann, 1986). In fact, this approach of conditioning rainfall–
runoff models in ungauged basins on regionalized hydrologic
response indices is an emerging method for predictions in unga-
uged basins (Wagener and Montanari, 2011). As an alternative to
the simple area ratio method, the models developed in this study
could be used to generate historical monthly runoff for re-calibra-
tion of LBRM or other rainfall–runoff models. Further work is
required to determine which temporal characterization of hydro-
logic response provides a more robust basis for rainfall–runoff
model calibration.

Hydrologic response indices are commonly used to generate
ancillary information that can be applied to watershed classifica-
tion schemes (e.g. Sawicz et al. (2011)) or to constrain prior param-
eter spaces of rainfall–runoff models (e.g. Bulygina et al., 2009;
Yadav et al., 2007). This study indicates this ancillary information
will be substantially different for different temporal characteriza-
tions of runoff ratio. The studies reviewed here have focused on
long-term characterizations of hydrologic response. These studies
have provided important insights for PUB research, and additional
insights may be expected from the inclusion of multiple temporal
characterizations of any response index.

In light of the previous discussion and this study’s results, the
multiple linear regression and regression tree models conditioned
on MRRi observations appear promising for application to the
entire Great Lakes basin. Important next steps for this research
include applying these models to the entire Lake Michigan basin
(which is entirely within the U.S.) followed by application to the
entire Great Lakes basin as data for the Canadian portion of the
basin become available. This agenda provides the opportunity for
inter-comparisons, including cross-validation at gauged locations,
with (1) the area ratio method, to assess model sensitivity to spa-
tial heterogeneity of watershed physical characteristics, and (2)
process-based rainfall–runoff models such as LBRM and MESH, to
assess the viability of predicting runoff in ungauged basins directly
from regionalized hydrologic response indices.
5. Conclusions

Hydrologic response indices have frequently been employed in
contemporary research related to predictions in ungauged basins.
In this study, we developed regression models relating a hydrologic
response index (monthly runoff ratio) to 12 watershed physical
characteristics for 163 watersheds in the Great Lakes basin. For
the dependent variable in these regression models, we used
monthly runoff ratio as the indicator of hydrologic response and
defined it at two temporal scales: (1) treating all monthly runoff
ratios as individual observations, and (2) using the mean of these
monthly runoff ratios for each watershed as a representative
observation. Results from this study contribute important insights
for contemporary research involving hydrologic predictions in
ungauged watersheds.

Application of our models to 62 validation watersheds
throughout the Great Lakes basin indicated that monthly runoff
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can be simulated with reasonable skill using empirical relationships
between runoff ratio and watershed physical characteristics. These
results suggest the viability of empirical approaches to simulating
runoff in ungauged basins. This finding is significant given the
many regions of the world with sparse gauging networks and
limited resources for gathering the field data required to calibrate
rainfall–runoff models. Results from this study also indicated
that model simulations were far more sensitive to the temporal
characterization of hydrologic response than to the type of
regression technique employed. This result is particularly
important given the numerous applications of hydrologic response
indices in contemporary research for making predictions in
ungauged watersheds. These predictions are essential for water
resource management in the Great Lakes basin and worldwide.
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