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Abstract Nutrient loading has been linked to many

issues including eutrophication, harmful algal blooms,

and decreases in aquatic species diversity. In order to

develop mitigation strategies to control nutrient

sources, the relative contribution and spatial distribu-

tion of nutrient sources must be quantified. Though

many watershed nutrient models exist in the literature,

there is generally a tradeoff between the scale of the

model and the level of detail regarding the individual

sources of nutrients and basin transport and fate

characteristics. To examine the link between water-

shed nutrient sources, landscape processes, and in-

stream loads in the Lower Peninsula of Michigan, a

spatially explicit nutrient loading model was devel-

oped. The model uses spatially explicit descriptions of

nutrient sources and a novel statistical model

describing spatially-explicit nutrient attenuation along

transport pathways to predict total nitrogen and

phosphorus loads. Observations collected during

baseflow and melt conditions from 2010–2012 were

used to calibrate and validate the model. The model

predicts nutrient loads, provides information on the

sources of nutrients within each watershed, and

estimates the relative contribution of different sources

to the overall nutrient load. The model results indicate

that there is a high degree of variability in seasonal

nutrient export rates, which can be significantly

greater during snow melt conditions than during

baseflow. In addition, the model highlights the con-

siderable variability in seasonal pathways and pro-

cesses that impact nutrient delivery. The model

performance compares favorably to other regional

scale nutrient models. This work has the potential to

provide valuable information to environmental man-

agers regarding how and where to target efforts to

reduce nutrient loads in surface water.

Keywords Nutrient loading � Nutrient sources �
Watershed modeling

Introduction

Nutrient loading models are useful for quantifying

how changes in land use, management practices, and

nutrient sources will likely impact in-stream and
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coastal water quality. While water quality trends can

be observed through periodic sampling, observations

are limited in spatial and temporal extent by expense

and accessibility (Smith et al. 1997; Valiela et al.

1997; Alexander et al. 2002; Borah and Bera 2004).

Cutbacks to state and federal monitoring programs

have led to decreases in the frequency and geographic

coverage of samples (Robertson and Saad 2011).

Models can be used to estimate nutrient loads at un-

monitored locations, increasing the spatial and tem-

poral resolution of nutrient loading estimates (Smith

et al. 1997). They can also forecast trends in water

quality under scenarios of changing land use and

climate, and have been used at various scales to assess

the sources of nutrients, target source areas for

management, and predict the effectiveness of man-

agement strategies. Models are particularly useful to

better understand the contributions of non-point

sources to nutrient loads (Nikolaidis et al. 1998;

Borah and Bera 2004) and can be used to understand

the role of pathway and process in the delivery of

nutrients which cannot be directly observed or

measured.

Severalnutrient loadmodeling approachesexist in the

literature (as reviewed in Alexander et al. 2002; Borah

and Bera 2004; Valiela 2002). These range from semi-

distributed hydrologic models such as the soil water

assessment tool (SWAT) to simple mass balance

accounting (Jaworski et al. 1992; Alexander et al.

2002; Boyer et al. 2002). A common approach used to

quantify the nutrient sources for a watershed involves

assuming nutrient loading rates are directly related to

factors such as land use or management practices rather

than directly accounting for independent source contri-

butions. For instance, it is common to consider an

‘‘urban’’ source rather than the individual contributions

to the urban environment, which can include several

potential sources that have different spatial distributions

and delivery mechanisms. Such methods generally

assume that there is a linear relationship between

changes in land use or management and source contri-

bution to loading,which limits the transferability of these

models (Zhang 2011; Destouni et al. 2006). The lack of

direct source accounting makes it difficult to apply these

models consistently in highly variable watersheds

(Nikolaidis et al. 1998; Destouni et al. 2006).

With the exception of the process-based models,

existing approaches are generally applied to yearly

loading averages and do not consider seasonal vari-

ability in processes and pathways. Detailed descrip-

tions of each source, independent of transport

mechanisms, are necessary to describe nutrient loads

across highly variable watersheds and to predict how

nutrient loading will be impacted by changes in

climate and land use.

The modeling approach described here separates

nutrient load modeling into two distinct steps: (1)

spatially- and source-explicit nutrient source model-

ing, developed and described in (Luscz et al. 2015),

and (2) spatially-explicit, temporally-variable statisti-

cal transport and fate, or ‘‘pathway and process’’,

modeling. This manuscript focuses on the structure,

calibration, and validation of the statistical fate and

transport model in Michigan’s Lower Peninsula.

Seasonal models were developed to describe loading

of total nitrogen (TN) and total phosphorus (TP)

during baseflow and snow melt conditions. In addition

to predicting nutrient loads at points along streams in

the Lower Peninsula, the model can predict the

amount and source of nutrients delivered to surface

water, the pathways (surface or ground) along which

nutrients traveled to surface water, the attenuation of

nutrients, and the contribution of individual sources to

stream loads.

The models were calibrated and validated using

data collected between 2010 and 2012. An annual

model was also developed using average annual load

estimates developed for the USGS SPAtially Refer-

enced Regressions On Watershed attributes (SPAR-

ROW) Great Lakes model (Robertson and Saad 2011),

so that a direct comparison can be made between the

approach described here and other regional scale

nutrient loading models.

This work was motivated by the need for a

nutrient model that can accurately and consistently

predict nutrient loads at a high level of spatial detail

across diverse watersheds. This model improves on

existing nutrient loading models by enhancing the

spatial detail of individual sources at a regional

scale while retaining the ability to predict source

contributions to the observed load. In addition,

unlike models that consider a sub-watershed

approach (Fig. 1), this model defines explicit and

seasonally variable pathways that can be used to

identify specific source areas within individual sub-

watersheds.
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Methods

Model domain

Models were constructed for watersheds in the Lower

Peninsula (LP) of Michigan. The northern portion of

the LP is mostly unmanaged land while the dominant

land uses in the south are rangeland and row crop

agriculture. There are also pockets of developed land

that are primarily located in the south. The largest

developed area is around the city of Detroit, which is

in the southeast corner of the state. Michigan’s LP is

covered primarily by unconsolidated glacial drift,

which may be greater than 300 meters thick in the

central northern section and only a few meters thick in

a few regions where bedrock outcrops along coastal

bluffs or incised stream valleys (Olcott 1992). These

sediments are composed of relatively coarse-textured,

high hydraulic conductivity glacial tills, glacial out-

wash sands and gravels, with some fluvially reworked

sands and gravels, and locally extensive lacustrine

clay deposits. Annual streamflow across much of the

LP is dominated by baseflow from this generally

productive unconsolidated aquifer system. For the

model domain, the average proportion of flow con-

tributed by groundwater (estimated by Wolock 2003)

is 54% and ranges from 19 to 90% across the study

domain.

The model represents the period from 2005 to 2012.

Inputs to the model are provided at a 90 meter grid cell

spacing. For this study, we developed models repre-

senting three different nutrient loadings: early spring

snow melt, late summer baseflow, and the annual

average. The seasonal conditions were chosen to

represent two presumably different loading scenarios:

very high flows during snow melt that flush nutrients

from a dormant winter landscape including surface

runoff and groundwater inputs to stream discharge,

and low flows representing primarily groundwater

transport pathways. Annual average loads provide a

time-weighted average of these and other stream

hydrologic conditions.

Model description

The form of the model equation considers a simplified

conceptual structure in which sources applied to the

landscape are subject to losses at the point of

application, and attenuation along two pathways:

travel within the upland portion of the basin and

travel within the stream. This attenuation is described

by statistically derived reduction factors that are

functions of a basin’s physical features.

Themodel structure is similar inmanyways to that of

SPARROW, however it differs in several important

ways. First, this model has a spatially explicit

Rj S i,j

Bi,j

Sub-basin Model (SPARROW) Spatially Explicit Model (this work)

L

L = ∑S*R*B 

L

L =   ∑   ∑(Si,j*Ri,j*Bi,j) 
cells

j

L = Total Load
Si,j = Nutrients
Bi,j = Basin Reduction
Rj  = River Reduction

sources

i

Fig. 1 Comparison of a sub-basin based approach (such as the USGS SPARROWmodel) and the spatially explicit approach described

here
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description of sources and basin factors, which includes

within basin variability and the addition of travel

distance and travel time as factors. This allows for an

expanded process-based description of pathways.

Second, this model does not include any calibrat-

able ‘‘source terms’’ that allow for additional nutrient

source applications not accounted for in the input layers.

Because this model assumes that all nutrient sources

have been explicitly included, there is no need for any

coefficients that would allow total applied nutrients to

exceed inputs.While the source terms used in themodel

could underestimate the true source values thiswould be

reflected in artificially small loss and attenuation terms.

Third, this model splits overland travel into two

pathways: surface and subsurface, with a statistically-

derived partitioning parameter. The differences

between the spatially explicit model structure described

here and a sub-basin based model such as SPARROW

are illustrated in Fig. 1.

The basic input for this modeling approach is a

spatially detailed description of nutrient applications

to the landscape from six distinct sources: (1) atmo-

spheric deposition, (2) septic tanks, (3) point source

stream loads, (4) manure fertilizer applications, (5)

chemical agricultural fertilizer, and (6) non-agricul-

tural chemical fertilizers. Nutrient applications are

defined for each cell of the model using an estimation

process described in Luscz et al. (2015). Maps of these

sources for both N and P are included in the

supplementary material. The load at an observation

point (for instance, a sampled stream location) is

modeled by summing the contribution of nutrients

from all cells that are upstream of the observation

point, and applying the statistically-derived reduction

factors, which are functions of that cell’s position in

the watershed. The conceptual model underlying the

model equation is shown in Fig. 2, and the general

functional form of the model is given in Eq. (1).

L ¼
Xsources

i

Xcells

j

ExtiSij FgrdjBgrdij
�

þ 1� Fgrdj
� �

Bsurfj�Rj ð1Þ

where L is the load (kg/year) at a modeled in-stream

location, Sij is the application of source i to catchment

cell j, Ext describes the in-place removal of nutrients

prior to transport (due to, for instance, denitrification

by soil microbes, or harvest N and P through plant

uptake), Fgrd is the fraction of nutrients entering the

subsurface pathway, and Bgrd, Bsurf, and R are

reduction factors that account for physical and

biological attenuation in the watershed. Bsurf, Bgrd,

Btile, R, Ext,and Fgrd are unitless; the units of S are

kg/year.

Bsurf and Bgrd describe the proportion of input

nutrients that remain after attenuation occurs during

travel through the landscape to surface water; Bsurf

represents the surface pathway and Bgrd represents the

groundwater pathway. Bsurf and Bgrd are exponential

functions of travel distance from cell j to surface

water. These factors are calculated as

Bsurfj ¼ eða1�DjÞ ð2Þ

Bgrdj ¼ eða2�DjÞ ð3Þ

where a1 and a2 are empirically derived negatively-

valued coefficients, and D is flow distance from cell

j to the nearest stream. While in reality, depending on

the time of year and the biologic and physical

conditions, the basin could become a source of stored

nutrients, it was assumed that the net effect of these

processes would be small over the period described by

the model. The reduction factors thus describe

permanent removal of nutrients relative to the time

scale of the model. For point sources, which are

assumed to be applied directly to stream channels,D is

set equal to 0, thus Bsurf and Bgrd are both equal to 1.

This ensures that point sources only experience

attenuation along the river pathway.

Ext is an extraction factor that accounts for the in-

place removal of nutrients (such as harvest), which is

only active for surface-applied sources (i.e. atmo-

spheric deposition, chemical agricultural fertilizers,

and manure) on land that is harvested. For all other

cells and sources, Ext is equal to 1. The model applies

a single value for Ext across all surface applied sources

within harvested lands. While each of these sources

may have different extraction rates, due to the

complex nature of N or P cycling within the root zone

of harvestable areas, it is difficult to separate these

terms using the statistical approach applied here while

still maintaining a parsimonious model.

R describes the proportion of nutrients that remain

after attenuation occurs during the in-stream portion of

the pathway and is an exponential function of both in-

stream travel time and normalized basin yield (Eq. 4).
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Rj ¼ eða3�TjÞ � BYj=BYmax ð4Þ

where T represents the in-stream travel time from cell j

to the downstream observation point, a3 is an empir-

ically derived coefficient, BY j is the basin yield

defined for each sub-watershed (defined as basin

discharge divided by basin area), and BYmax is the

maximum basin yield for the dataset. Rivers with slow

moving water and/or small, shallow channels, may

experience more biologic and physical processing due

to increased interaction between the channel bed, the

hyporheic zone, and the biota in the stream (Alexander

et al. 2000; Mainston and Parr 2002). These water-

sheds tend to have low basin yields.

One alternative groundwater pathway (septic

plumes) and one alternative surface pathway (tile

drains) was also considered in the model. Since

attenuation in septic plumes occurs differently than

attenuation in other areas (Valiela et al. 1997;

Robertson and Cherry 1992; Reneau and Pettry

1976; Gilliom and Patmont 1983), Bsep, which

describes septic plume attenuation, is substituted for

Bgrd for the septic source. Bsep has the same form

as Bsurf and Bgrd (Bsep ¼ eða7�DjÞ). In the Lower

Peninsula model, the coefficient for Bsep was fixed as

a7 ¼ �0:002 based on analysis by Valiela et al.

(1997) who compiled data from several studies

sampling septic plumes and concluded that roughly

35% of loss occurred in the septic plume over a 200

meter distance with an exponential loss rate. Btile

(Btile ¼ eða5�DjÞ) was substituted for Bsurf in cells

where tile drains exist since tiles alter the overland

flow pathway.

Fgrd is a function of normalized groundwater

recharge, and is calculated as

Fgrdj ¼ a6 � rechargej=rechargemax ð5Þ

where rechargej is the estimated recharge in each cell,

and rechargemax is the maximum value of recharge

across the study domain. Fgrd is multiplied by the

source loading in each cell to determine the proportion

of the load that travels via the subsurface pathway. For

surface water cells, this model assumes that there is no

subsurface pathway, and all nutrients applied directly

to those cells (including atmospheric deposition that

falls on surface water) are routed only via surface

water. Similarly, Fgrd is set to 0 for point sources,

which are only applied to river cells . Fgrd is set to 1

for the septic source, since septic tank loading occurs

only in the subsurface.

Several alternative parameters were considered in

the modeling structure including travel through lacus-

trine and palustrine wetlands, in-stream travel dis-

tance, and depth to bedrock. These parameters were

not included in the final model because model

estimates were relatively insensitive to these factors,

and they did not improve model performance.

R

Sseptic

Bsep

Smanure+Schem-ag

Bgrd

Fgrd Bsurf

Btile

Spoint

Ext

Satm

Nutrient Source

Nutrient Removal/Attenuation

Nutrient Pathway

Snon-ag

Fig. 2 Conceptual schematic of modeling approach
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Model inputs

Nutrient source inputs for the model were estimated

using a 90 meter grid resolution for the LP based

on methods described in Luscz et al. (2015). Six

independent sources of each N and P were mapped

using readily-available GIS and remote sensing

datasets, in addition to manually mapped urban-

related features. Five non-point sources (atmo-

spheric deposition, chemical agricultural fertilizers,

non-agricultural chemical fertilizers, manure, and

septic system loads) were described in addition to

point source loads. Source-specific nutrient maps

reproduced from Luscz et al. (2015) are included in

the supplementary material (S3 and S4). Annual

rates (kg/year) were used for all source inputs

except for atmospheric deposition for which sea-

sonal rates were determined. The processes that

lead to nutrients being available for transport are

complex, and for modeling purposes we assumed

that annual loads for upland terms are sufficient.

Since atmospheric deposition is loaded to wetlands,

seasonal inputs were estimated for atmospheric

deposition based on seasonally averaged precipita-

tion and deposition rates. Although point sources

are also loaded to streams and wetlands the point

source contributions represent annual loads, as we

assumed that point sources are largely stable since

they are mostly outflows linked to populations

served.

The following sections describe the methods used

to develop the landscape and travel pathway factors

that were used as inputs to the model. Travel pathway

and landscape terms were calibrated seasonally and

are based on seasonal inputs. However, the model

showed insensitivity to seasonal variations in some of

these terms, as discussed in ‘‘Model optimization’’

section.

Watersheds and travel distance

Travel distance was calculated using the national

elevation dataset (NED) (Gesch et al. 2002; Gesch

2007) and the ArcGIS Hydrology Toolbox, which

calculates flow travel distance based on an elevation

dataset. Sub-watersheds were generated using sam-

pling locations as pour points in the ArcGIS Hydrol-

ogy Toolbox.

Recharge

Recharge was estimated using a meta-model derived

from a process-based hydrologic model of the

Muskegon River watershed (Hyndman et al. 2007;

Wiley et al. 2010), located in the central portion of the

LP. The meta-model estimates the percentage of

precipitation that becomes recharge from soil hydrau-

lic conductivity values and land use class. The

hydrologic model, built using the landscape hydro-

logic model (LHM, Hyndman et al. 2007; Kendall

2009), simulated the period of 1980–2007 with hourly

timesteps at *425 meter resolution. Average annual

recharge and precipitation were calculated for each

cell in the LHM simulation, then linear regressions

were fit for each land use class to the proportion of

annual precipitation that became recharge as a func-

tion of saturated soil hydraulic conductivity. These

equations are included in the supplementary material.

The recharge proportion meta-model was applied to

Michigan’s LP using soil hydraulic conductivity

derived from the soil characteristics of the soil survey

geographic database (SSURGO) (Natural Resource

Conservation Service) and land class data from the

national land cover database (NLCD) (Fry et al.

2011). Estimates of annual precipitation were down-

loaded from the PRISM climate group (PRISM

Climate Group 2011).

Tile drainage

The tile drained area of Michigan was surveyed on a

county level by the NRCS during the 1992 National

Resource Inventory (NRCS 1995). However, the

model developed here required updated information

and a fully spatially-explicit tile drainage layer. To

derive this layer, first, a 750 meter buffer was added to

the Canal/Ditch feature of the National Hydrography

Dataset (Roth and Dewald 1999). Second, cells

classified in the 2006 NLCD (Fry et al. 2011) as

‘‘Cultivated Crops’’ were selected within each buffer.

Since the Canal/Ditch feature includes stream features

that do not drain tiles, further classification was

required. As a result, the third step was selecting areas

of low slope (cells where the average slope is less than

2% over 1 km) and/or low soil hydraulic conductivity

(B5.0 9 10-6 cm/s) within the canal ditch buffers as

potential tile drained areas. This three step process of

42 Biogeochemistry (2017) 133:37–57
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classification ensured that areas that are extremely flat

but have moderate drainage, such as those that

surround Saginaw Bay, were classified as tile drained

areas. The resulting tile drainage map is shown in

Fig. 3.

Stream velocity and travel time

Stream morphology plays a role in nutrient cycling by

controlling the residence time of surface water in a

watershed and the contact between water and the

stream bed (Mainston and Parr 2002; Alexander et al.

2000). The model accounts for stream morphology

using estimates of stream velocity, in-stream travel

time, and basin yield.

Flow velocity was estimated using an empirical

relationship derived by Leopold and Maddock (1953)

that relates channel area and depth to discharge:

A ¼ aQb ð6Þ

where A is channel area (m2),Q is discharge (m3) and a

and b are estimated coefficients with appropriate units.

A similar approach has been used to assess stream

morphology and discharge in several studies (Alexan-

der et al. 2000; Schulze and Hunger 2005; Bjerklie

et al. 2003). The relationship for channel area shown

in Eq. (6) was divided by Q and manipulated to derive

a relationship between velocity and discharge:

v ¼ 1

a
Q1�b ð7Þ

The coefficients for these relationships were derived

empirically from channel area and discharge data

available from USGS gauges for Michigan’s Lower

Peninsula (U.S. Geological Survey 2012). The USGS

site visit observations for channel area and discharge

were averaged for each gauge.

Site visit data were filtered for discharge observa-

tions collected during high flow conditions (discharge

observations between the 75th and 90th percentiles)

and low flow (baseflow) conditions (discharge obser-

vations less than the 20th percentile). The 75th and

90th percentiles were chosen for high flow so that the

dataset did not include observations collected under

flood conditions. Values within 10% of the median

value were selected to represent average (annual) flow

conditions. The datasets were further subset based on

the geology underlying the gauge location; three

geologic models (till, lacustrine, and outwash) were fit

for each flow condition (Farrand and Bell 1982). The

results of the analysis are reported in the supplemen-

tary material.

In order to apply these relationships to all stream

cells, the discharge at every location in the Lower

Peninsula was estimated from the flow accumulation

derived using NED and the ArcGIS Hydrology

Toolbox. USGS gauge data were used to derive

empirical relationships between calculated cell flow

accumulation and discharge. The 80th, median, and

20th percentiles of discharge were used to create high

flow, average flow, and low flow (baseflow) linear

models. For the baseflow relationship, flow accumu-

lation was multiplied by the baseflow index, which is

the proportion of flow attributed to groundwater

discharge as estimated for gauges by the USGS

(Wolock 2003). One discharge model was created

for each flow condition.

In-stream flow length was calculated for each cell

by subtracting the flow length between each cell and

the stream network from the flow length between each

cell and the downstream observation point. The in-

stream velocity was estimated from the predicted

Fig. 3 Estimated tile drained areas for the LP of Michigan

(indicated in black) estimated from soil type, slope, and NHD

features
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discharge in each cell using Eq. (7), and was then used

to calculate travel time by weighting the cell-by-cell

flow length function within the Hydrology Toolbox.

Calculated travel time to the Saginaw Bay watershed

sample location is shown in Fig. 4.

In-stream nutrient loading data

For the seasonal pathway and process models, in-

stream nutrient loading estimates were calibrated to

and validated using observations collected during

synoptic sampling rounds. Flow measurements and

nutrient samples were collected from the fall of

2010 to the spring of 2012 in five field campaigns

intended to capture synoptic conditions during

baseflow and snow melt in the Lower Peninsula of

Michigan. Based on precipitation totals, the fall

(2010 and 2011) and winter (2011 and 2012)

seasons during the sampling period represented

average conditions in the Lower Peninsula. The

watersheds sampled represent a large range in

watershed size, land use, and nutrient inputs.

The snow melt period was selected to capture the

period following the first significant snow melt during

the early spring which flushes accumulated nutrients

from the landscape. The baseflow period, which

occurs primarily in the late summer and early fall,

was selected to capture the period when average

stream flows are at a minimum due to limited inputs

from surface runoff. The timing of the sampling events

was determined based on data from the USGS stream

gauges and weather data for the sampled watersheds.

The two seasonal calibration datasets were col-

lected from 2011 to 2012. For baseflow, samples were

collected between August and October and for melt,

samples were collected in early March. The

2011–2012 sampling focused on four major water-

sheds in the LP: Grand River (south central), Saginaw

Bay (east), Muskegon River (north central), and

Boardman-Charlevoix (northwest) (Fig. 5). Between

15 and 30 sites were sampled within each watershed

for a total of 90 sites that were chosen to evenly

distribute samples throughout the four watersheds.

The two seasonal validation datasets were collected

in early October 2010 (baseflow) and mid-late March

2011 (melt). Sample locations for the 2010–2011

campaign were chosen to capture the vast majority of

the surface water outflow to the Great Lakes from the

LP, and to include smaller sites with greater variability

in hydrogeologic and land use conditions. Sites were

located at the farthest accessible downstream sample

point on 33 major and 34 minor streams and rivers

discharging to the Great Lakes; a total of 67 locations

were sampled. This sampling, along with the suite of

in-field and lab analytes collected, is discussed in

greater detail in Verhougstraete et al. (2015). The

watershed area for the combined sampling covers over

70% of the land area of the LP.

Stream discharge was either measured directly or

obtained from the real-time USGS gauge station rated

values (U.S. Geological Survey 2012) if a site was

located at a USGS gauge. Discharge was measured

using a Sontek RiverSurveyor S5 acoustic doppler

profiler (ADCP) in all but lower flow streams, which

were measured using a Marsh-McBirney Flo-Mate

2000. Samples to be analyzed for total nitrogen (TN)

and total phosphorus (TP) were collected at the time of

flow measurement. Samples were also collected near

USGS stream gauges, and data from gauges were

50

20

10

5

In-stream Travel Time 
(Hours)

Fig. 4 Estimated in-stream travel time (hours) to sample point

for the Saginaw Baywatershed under high flow (e.g., snowmelt)

conditions
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downloaded to coincide with the time of sample

collection. Care was taken during sampling to ensure

that the hydrologic events represented (baseflow or

snow melt) were truly occurring, requiring rapid

sampling following meteorological events.

Grab samples were collected in-stream or from

bridge crossings and then immediately frozen on dry

ice. The samples were analyzed by the Michigan State

University Algae Lab using second derivative spec-

troscopy (TN) (Crumpton et al. 1992) and ascorbic

acid methods (TP) following persulfate digestion

(Standard Methods 4500-P.E. and 4500-N.C). The

full sampling results are provided in the supplemen-

tary material.

Estimated annualized loads for each event were

calculated as Lobs ¼ Q � C where Q is the observed

stream discharge (m3/year) measured at a site, andC is

the concentration of a particular nutrient (kg/m3 of TN

or TP) from the sample collected at a site.

Annual loads reported by Robertson and Saad

(2011) and used to calibrate the SPARROW Great

Lakes model were also used to calibrate separate runs

of the annual TN and TP models. These runs were

performed so that the results and model performance

presented in this work could be directly compared to

SPARROW and the results reported in Robertson and

Saad (2011). Loads from watersheds located entirely

within the Lower Peninsula were selected from the

larger Great Lakes dataset.

Three observations within the annual data set

represent watersheds with loads that were 1–2 orders

of magnitude smaller than the rest of that dataset.

These observations (indicated by ‘‘*’’ in Fig. 5)

include the River Raisin and two locations on the

Huron River. Since the dataset for the annual model

was relatively limited, these observations were

excluded from the annual model calibration to prevent

these points from biasing the calibration. However,

loads calculated using the optimized model for these

three locations have been included in the calculated R2

values and the presentation of residuals and results.

It is important to note that the loads reported by

Robertson and Saad (2011) and used to calibrate the

annual models presented here represent the long-term

mean annual loads and were computed using Flux-

master [as described in Robertson and Saad (2011) and

Saad et al. (2011)] while the loads used to calibrate the

seasonal models are annualized instantaneous loads,

collected during a relatively stable flow period repre-

sentative of each condition (snow melt and baseflow).

The results from the annual models are used both for

comparison to SPARROW, as well as to investigate

seasonal effects of uptake along transport pathways.

Model optimization

The values of the coefficients a1 through a6 (a7 was

fixed) for each model were fit using the Matlab

function fminseach, which uses the Nelder–Mead

simplex algorithm (Nelder and Mead 1965), a direct

search algorithm. The function was executed using the

Global Start function which runs the optimization

function a large number of times using various start

points generated with a scatter search algorithm

Fig. 5 Map of Michigan’s Lower Peninsula showing the

locations of nutrient loading observations. Nutrient loading

observations that were used to calibrate the seasonal models

were collected within four focus watersheds: Boardman-

Charlevoix, Saginaw Bay, Muskegon River, and Grand River.

The limits of these major watersheds are shown in grey. Points

with an ‘‘asterisk’’ indicate observations that were not included

in the annual model calibration. These observations represent

watersheds with loads that are 1–2 orders of magnitude lower

than the rest of the dataset
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(MathWorks 2016; Glover 1997). The global search

algorithm identifies numerous local objective function

minima generated from varying initial parameter

values in an attempt to identify the global minimum.

The aim of this approach was to ensure that a globally

optimal parameter set is obtained, and to provide

uncertainty estimates for the parameters.

The objective function (/) for the optimization was

to minimize the mean absolute difference between the

natural log of the observed concentration of a partic-

ular nutrient and the natural log of the simulated

concentration:

/ ¼ meanðabs½lnðCmodelÞ � lnðCobservedÞ�Þ ð8Þ

where Cmodel ¼ Lmodel=Q where Q is the observed

stream discharge (m3/year), Lmodel is the modeled in-

stream load (kg/year) calculated by the model equa-

tion (Eq. 1), andCobserved is the observed concentration

of a particular nutrient (kg/m3 of TN or TP). The final

coefficient values were determined by averaging the

10% of optimized coefficient values identified by the

global search algorithm that had the lowest objective

function value. During model development, objective

functions were built using area normalized loads and

total annual loads as the target of the objective

function. Concentrations were ultimately selected for

the objective function because they improved the

model’s sensitivity to the pathway terms; when loads

were used, the model was dominated by the flow term.

However, following model calibration, the annualized

load was calculated and used to present model results

and residuals. This was done so that model results

would be comparable to those presented for other

regional scale models.

Six parameters were optimized, corresponding to

the coefficients for Bsurf, Btile, Bgrd, Fgrd, Ext and R.

Bounds were applied to the coefficients to reduce

optimization time and ensure that the coefficients

applied were in agreement with the process-based

form of the statistical model. Coefficients that modify

distance (Bsurf, Btile, Bgrd, and R) were limited

between 0 and-1 since those coefficients describe the

attenuation of nutrients that occurs along transport

pathways. The proportional coefficients (Fgrd and

Ext) were constrained between 0 and 1. Furthermore,

the parameters for the exponential coefficients were

log-transformed for optimization, allowing the

optimization routine to operate in a relatively linear

parameter space.

Some of the basin parameters included in the

model describe processes that are not expected to

exhibit significant seasonal variation. These param-

eters include the tile pathway (Btile) and those

pertaining to the groundwater pathway (Fgrd and

Bgrd). Initially, these parameters were optimized,

allowing for seasonal variability; however the model

was insensitive to the seasonality of these parame-

ters. To increase sensitivity, and to maintain a

parsimonious model, these coefficients were linked

during the seasonal model optimization. This was

achieved by creating a combined optimization run

where the values for Btile, Fgrd, and Bgrd were

shared between the baseflow and melt models. The

combined objective function value was then used as

the target of the optimization.

Sensitivity analysis

Sensitivity was calculated for each parameter value by

individually perturbing values from the globally-

optimized parameter set, and computed according to

Sensitivity ¼
/ optim � optim�ð1þDÞ

�� ����� �

D � / optim

�� ð9Þ

where D is the small change in the parameter value

(0.5%) and /joptim is the optimization function

evaluated at the optimized parameter value. The

calculated sensitivity for each parameter was then

normalized to the most sensitive parameter for each

linked model.

Residual analysis

For residual analyses, error was calculated as

Error ¼ logðLmodelÞ � logðLobservedÞ ð10Þ

A residual of 1 indicates an order magnitude over-

prediction by the model. Residuals were analyzed to

determine the potential for model bias. A linear

regression analysis [following Alexander et al.

(2002)] was performed to relate residuals to watershed

characteristics such as land use, runoff, and watershed

area.
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Results and discussion

Model calibration

The optimized model coefficients are reported in

Table 1, along with the observed range in coefficient

values amongst the top 10% of optimized values. Most

coefficients are relatively insensitive (less than an order

of magnitude) to differences in initial search values.

The results for the six optimized models (TN

Baseflow, TN Melt, TN Annual, TP Baseflow, TP

Melt, and TP Annual) are shown in Tables 1 and 2. All

models had adjusted R2 values greater than 0.72, and

all but two models (TP Melt and TP Annual) had

adjusted R2 values greater than 0.84. Overall, the

nitrogen models performed better than their phospho-

rous counterparts except for the baseflow model.

Seasonally, the baseflowmodels performed better than

the melt models.

The performance of the annual models is compa-

rable to the SPARROW models for the Lower

Peninsula watersheds presented by Robertson and

Saad (2011). Based on R2 and root mean squared error

(RMSE), the TN annual model performs as well as the

SPARROW model for watersheds in the LP; the R2

value for both models is 0.95 and the RMSE value is

0.03. The TP SPARROW model has a slightly higher

R2 value and a slightly lower RMSE than the TP

annual model presented here; the R2 value for this

work is 0.81 and the RMSE value is 0.11 and the R2

value for the LP watersheds from the SPARROW

model is 0.86 with an RMSE of 0.05.

Figure 6 shows how log modeled loads compare

to log observed calibration loads for the six

Table 1 Summary of model estimated parameters. The average and range of the top 10% of estimated model parameter results are

reported for each model. For the seasonal models Bgrd, Btile, and Fgrd are linked, so the baseflow and melt models share the same

values for these coefficients

Table 2 Summary of estimated model fit parameters

Model Season Calibration R2 Adjusted R2 Validation R2 Optimization n Validation n RMSE

TN Baseflow 0.91 0.90 0.82 89 61 0.06

Melt 0.85 0.84 0.87 88 59 0.05

Annual 0.95 0.94 NA 26* NA 0.03

TP Baseflow 0.94 0.94 0.91 89 61 0.07

Melt 0.74 0.72 0.80 86 59 0.08

Annual 0.81 0.75 NA 26* NA 0.11

R2 values are for the log values of estimated and observed loads and RMSE represents the root mean squared error of the log

predicted and observed loads

* 26 observations were used for calibration, but all 29 observations were used to calculate R2 and RMSE values
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optimized models, and validation loads for the four

seasonal models. The plots show that most models

have good correspondence to the 1:1 line. The TN

Melt model shows a tendency to under-predict the

highest and lowest loads. The annual models over-

predict the lowest loads. Plots of observed yields

and modeled loads are provided in the supplemen-

tary material.

Nutrient source delivery

Sources delivered to surface water

The results from the annual model show that atmo-

spheric deposition and chemical agricultural fertilizer

are the largest contributors to the in-stream nitrogen

load (Fig. 7). However, the relative contribution of

each source to the total nutrients delivered to surface

water is highly variable seasonally and across land use

types. During baseflow, atmospheric deposition is the

primary source of nitrogen across all land use types

except for agricultural land. During melt, atmospheric

deposition is the majority source of nitrogen in

unmanaged and urban land, while chemical agricul-

tural fertilizer and manure are the largest sources of

nitrogen in agricultural and rangeland, respectively.

Point sources, septics and direct atmospheric deposi-

tion become a relatively larger contributor to total

nutrients delivered when there is less runoff and more

basin attenuation (such as during baseflow). The

model predicts that there is very little basin processing

during the melt event so surface derived sources are

relatively more important during melt. The model

predicts that significant sources of nutrients from

urban areas can include non-agricultural fertilizer,

septic tanks, and atmospheric deposition, depending

on the season.

The largest contributors of phosphorus to surface

water are chemical agricultural fertilizer, manure, and

point sources. Atmospheric deposition contributes a

relatively small amount of phosphorus and is often

considered effectively zero in many nutrient loading

models. However, during baseflow, the model predicts

that nearly 15% of total phosphorus delivered to

streams is derived from atmospheric deposition, so

ignoring atmospheric deposition as a source of phos-

phorus may lead to under-prediction of total
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phosphorus in such models. This effect can be even

greater in watersheds that contain large amounts of

unmanaged land (forest, range, grasslands). The TP

Baseflow model predicts that in unmanaged land,

atmospheric deposition of phosphorus is the primary

source of phosphorus during baseflow. Recent work

has indicated that over the past decade, concentrations

of TP in lakes and streams has increased across the

United States in watersheds covering all land uses

(Stoddard et al. 2016). Stoddard et al. (2016) suggest

that since the increases appear to be ubiquitous, a

widespread mechanism, such as atmospheric deposi-

tion, may be the cause.

As shown in Table 3, the model predicts that there is

a high-degree of seasonal variability in the amount of

nutrients exported from each land use. The export rate

of phosphorus for urban land is approximately the

same as cropland during baseflow, which may be

related to the relative increase in point source delivery

during baseflow (Fig. 7). The export rates for both

nitrogen and phosphorus are significantly higher

during melt than baseflow, particularly for agricultural

land.

The spatially explicit export of nutrients to surface

water is shown in Fig. 8. The results show how

seasonally, the relative importance of different sources

and land uses vary. During melt, urban and agricul-

tural areas become significant source areas for nitro-

gen and phosphorus.Within this region, there are areas

that export over 100 kg/ha/year of nitrogen and over
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Fig. 7 Estimated percent of total nutrients delivered to surface water for each source

Table 3 Predicted

annualized nutrient export

(kg/ha/year) by landuse for

Lower Peninsula of

Michigan

Model Season Cultivated crops Range Un-managed Urban

TN Baseflow 4.3 6.1 3 5.5

Melt 103.8 50.5 19 32.1

Annual 17.8 9 2.2 4.1

TP Baseflow 1.2 0.5 0.2 1.6

Melt 10.7 5.1 0.5 2.1

Annual 1.7 0.5 0.1 0.6
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10 kg/ha/year of phosphorus on an annualized basis.

These highly concentrated source areas correspond to

confined animal feeding operations (in cultivated

areas) and non-agricultural fertilizer application to

golf courses which were explicitly included in the

nutrient source layers developed by Luscz et al.

(2015) (provided in the supplementary material).

The TP Melt model results show that locally, urban

areas can seasonally export as much phosphorus as

cultivated areas.

Sources delivered downstream

Table 4 shows the model-predicted share of the total

annual nutrient load that is contributed by each source

to the downstream load for basins used for the annual

model calibration (model predicted source contribu-

tions to observed loads are provided in the supple-

mentary material). The ranges in source contributions

are shown in parenthesis. These basins coincide with

the Michigan Lower Peninsula basins used in the

broader SPARROW Great Lakes model (Robertson

and Saad 2011). The source contribution to total

10.0
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0.5
1.0

100
50

5
20

N kg/ha/yearMelt AnnualBaseflow
TN

TP

P kg/ha/year

Fig. 8 Predicted annualized nutrient export to surface water (kg/ha/year)

Table 4 Average source contributions to total basin nutrient

load predicted by annual model

Source TN TP

Atmosphere 44% (23–90%) 7% (1–33%)

Chem Ag fertilizer 34% (1–62%) 39% (1–76%)

Manure 9% (0–18%) 15% (1–31%)

Non-Ag fertilizer 4% (0–19%) 10% (0–38%)

Point source 2% (0–32%) 10% (0–82%)

Septic 6% (1–21%) 19% (2–55%)

Range in contributions to total load for modeled watersheds

shown in parentheses
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nutrient load predicted by this model agrees well with

predictions from the SPARROW model. Both models

predict that the predominant sources of nitrogen to the

sub-basin loads are atmospheric deposition and fertil-

izer. This model predicts that for the watersheds used

to calibrate this model, roughly 44% of the down-

stream load is derived from atmospheric nitrogen.

Based on results provided by Robertson and Saad

(2011), for the tributaries to Lakes Huron and

Michigan that have drainage areas greater than 150

km2, the average contribution of atmospheric deposi-

tion is 51%. A few sources identified by the

SPARROW model are surrogates for other sources

not explicitly incorporated in that model.

For the Lakes Huron and Michigan tributaries that

have drainage areas greater than 150 km2, SPARROW

attributes an average of nearly 20% of the TP load to

an ‘‘urban’’ source and 30% of the load is attributed to

forested land. This model predicts that approximately

29% of total phosphorus for the sampled watersheds is

contributed by non-agricultural fertilizer and septic

tanks and 7% of phosphorus is contributed by

atmospheric deposition. Depending on the nature of

the development, increases in urban area may not lead

to proportional increases in each type of urban source.

For instance, low to medium density urban areas like

the city of Lansing likely have a higher incidence of

septic and lawn fertilizer use than a high density urban

area such as downtown Detroit. The inclusion of these

sources explicitly, contributes to the model’s low bias

(see ‘‘Residuals’’ section).

The SPARROW Great Lakes model for TN does

not directly include contributions from urban land

uses. These sources are either attributed to other

sources or contribute to the model error (Robertson

and Saad 2011). This model predicts that around 10%

of the total monitored load for the Lower Peninsula

watersheds is contributed by non-agricultural fertilizer

and septic tanks, which are likely attributed to point

sources in the SPARROW model.

Pathways and processes

The coefficients that represent process and pathway

mechanisms quantify how the landscape attenuates

nutrients. Each of the coefficients modifies a spatially

explicit attribute that results in spatially explicit

reduction factors. In general, significantly more

attenuation and extraction of nutrients was predicted

by the baseflow event model than the melt model for

both N and P for seasonally-varying parameters

(Table 1; Bsurf, R, and Ext). Parameter values

optimized to the annual loads dataset fell between

those seasonally-optimized for either the melt or

baseflow event datasets. For those parameters simul-

taneously optimized across the seasonal models (Bgrd,

Btile, and Fgrd), optimized values differed signifi-

cantly between the annual and seasonal models.

In the case of Fgrd, the coefficient a6 represents the
portion of nutrients that enters the groundwater

pathway for the maximum recharge value of about

1.1 meters per year. For cells that have recharge less

than 1.1 meter per year, the model applies a reduced

value of Fgrd according to Eq. (5). The optimized

model predicts that seasonally, a maximum of 66% of

nutrients enter the groundwater pathway while the

annual model predicts that a maximum of 35% of

nitrogen enters the groundwater pathway (Table 1).

This variable is not expected to exhibit much seasonal

variation, and therefore, the value of Fgrd should be

similar for both the seasonal and annual models. Since

the annual calibration dataset for the Lower Peninsula

was limited, it’s likely that a larger dataset could

reduce the variability in the optimized values for this

coefficient. For phosphorus, the annual and seasonal

model predictions are similar; the seasonal models

predict that a maximum of about 41% of nutrients

enter the groundwater pathway while the annual

model predicts 34% of nutrients enter this pathway.

Based on the estimated recharge values for the LP, the

average Fgrd for the model domain (considering

seasonal results) is approximately 14% for TP and

22% for TN.

The groundwater basin reduction factors (a2) show
that attenuation in the groundwater pathway occurs

over much longer distances than along the surface

pathway. The optimized coefficient for Bgrd is small

across all models, suggesting that most nutrients

entering the groundwater pathway persist across long

distances. The models predict that relatively more

nitrogen is delivered via the groundwater pathway

relative to phosphorus.

The results for the basin reduction factors (a1)
indicate differences in processes and pathways both

seasonally and between nitrogen and phosphorus. For

example, the model indicates that more phosphorus

and nitrogen are delivered to streams (less attenuated)

during melt than during baseflow. The seasonal model
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predicts less variation in attenuation in the surface

pathway for phosphorous than for nitrogen.

Tile drains affect flow pathways and processes in

several ways. Tile drains change the natural drainage

pathways of water, decreasing travel times to surface

water and decreasing the time available for physical

and chemical processes that remove nutrients from

agricultural runoff (Robertson and Saad 2011). Sev-

eral physical and biological processes that affect

nutrients differently may affect the delivery of nutri-

ents in tile drains. The results for the annual models

(a5) indicate that annually, less attenuation occurs in

the tile pathway relative to the surface (overland)

pathway. The results for the seasonal models indicate

that more phosphorus than nitrogen is retained by tile

drained areas. A similar result was found for the

SPARROW Great Lakes model, (Robertson and Saad

2011) which showed increased delivery of nitrogen

but decreased delivery of phosphorus in areas with tile

drains.

The results for in-stream processing (a3) show that

in basins with the largest basin yield, very little in-

stream attenuation occurs. This is consistent with other

studies that have shown that higher attenuation rates

occur in small and/or slow moving streams where

there is more time for water to interact with the stream

bed (Robertson and Saad 2011; Mainston and Parr

2002; Alexander et al. 2000). The model also predicts

that slightly more attenuation occurs during baseflow

when discharge is lower.

As expected, optimized values for extraction (Ext),

given by a4 were significantly higher during baseflow

than during the melt event for both N (94 vs. 0%) and P

(94 vs. 2%). Annual values fell between the two event

models, and had a greater uncertainty (range in top

10% of optimized model parameter values). Values of

a4 fell between 39 and 57% for the TN annual model,

and 13–41% for the TP annual model. As mentioned

above for Fgrd, the greater uncertainty range in the

annual models could be due to the more limited

optimization dataset.

Sensitivity

The localized sensitivity near the optimum value of

each parameter is shown in Table 5. The sensitivities

reported in Table 5 were normalized to the most

Table 5 Sensitivity of model objective function to 0.5% change in parameter value normalized to the most sensitive parameter in

each event

Model Season
Bsurf Bgrd R Ext Btile Fgrd
(a1) (a 2) (a 3) (a 4) (a 5) (a 6)

TN
Baseflow -0.045

-0.004
-0.175 1.000

-0.011 -0.099
Melt 0.003 -0.001 0.001

Annual 0.084 0.018 0.047 -0.427 1.000 0.161

TP
Baseflow -0.145

-0.001
0.042 -1.000

0.166 0.008
Melt -0.003 -0.010 0.006

Annual 0.253 0.019 0.905 -1.000 0.479 0.039
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validation watersheds
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sensitive parameter in each linked model to indicate

the relative sensitivity of each parameter. The results

show that Ext was one of the most sensitive param-

eters, likely due to the significant variability of

nutrient loads across agricultural land due to both

manure and chemical agricultural fertilizer sources.

Bgrd which describes the attenuation occurring in

the groundwater pathway is one of the least sensitive

parameters. The model used overland travel distance

to describe spatial variations in groundwater attenu-

ation; however, this may not accurately reflect the

groundwater residence time, particularly in water-

sheds where the groundwatershed is significantly

different from the surface watershed, or where

hydraulic conductivity values vary significantly. A

better description of the groundwater pathway may

improve the sensitivity of the model to this parameter.

Residuals

The medians of the model residuals ðlogðLmodelÞ �
logðLobservedÞÞ for the calibration and validation

watersheds are close to 0, and with few exceptions,

the residuals are less than an order of magnitude

(Fig. 9). Residuals by watershed are shown in Fig. 10.

The spatial distribution of residuals is nearly random

with the exception of the TP Melt model which tends

to under-predict loads in watersheds in the northern

part of the state. These watersheds are dominated by

forested and undeveloped land while the southern

watersheds are predominantly agricultural or urban

land uses. This suggests that there may be a slight bias

in the TP Melt model that leads to over-predictions of

agricultural or urban sources and under-prediction of

natural sources.
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Fig. 10 Log model residuals (kg/year) by watershed for calibration dataset
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To explore this potential bias further, a regres-

sion of prediction errors and watershed character-

istics was developed. This approach was used by

Alexander et al. (2002) who compared several large

basin statistical nitrogen loading models for the

New England region. The same watershed charac-

teristics that were used in their analysis were used

here to assess model bias, including basin area,

runoff (basin yield), cultivated area, and urban area.

This approach provides an indication of model bias

and a comparison of the performance of this model

with other regional statistical nutrient loading

models.

The results of the analysis, which are shown in

Table 6, indicate that most of the models have very

little bias. The values shown in bold indicate param-

eters with p\0.05. As suggested by the residual map,

the R2 of the TP Melt models shows a potential

relationship between the residuals and the regression

parameters, specifically cultivated land which is

confirmed by a significant coefficient.

The results also suggest that the TN Annual and

Baseflow models may also have small biases related to

cultivated land. However, this bias appears to be

relatively small; plots of model residuals relative to

watershed characteristics with significant coefficients

(p\0.05) are provided in the supplementary material.

Based on this analysis, the modeling approach

described here has similar or less bias (low R2, slopes,

and least amount of significance attributed to regres-

sion parameters) than the regional TN models

described by Alexander et al. (2002) with the excep-

tion of the TP Melt model.

The source of the bias in the TP models may be

because the delivery of sediment is not directly

described by the model but is an important transport

mechanism for phosphorus (Mainston and Parr 2002).

Relatively large amounts of sediments are mobilized

during melt, and therefore, sediment delivery may be a

sensitive parameter that is not included in the model.

Additionally, the model does not explicitly include

impoundments, which are common in the northern

watersheds and affect the delivery of sediment down-

stream. Further analysis is needed to determine if these

factors are the source of the model bias.

Conclusions

The model results indicate that chemical agricultural

fertilizer is the largest annual source of nitrogen and

phosphorus to surface water in Michigan’s Lower

Peninsula. Atmospheric deposition contributes, on

average, 4% of phosphorus delivered to streams and

accounted for as much as 33% of the observed stream

load in modeled watershed loads. Most models do not

account for atmospheric deposition of phosphorus and

thus may be attributing partial loads to other sources,

particularly in forested watersheds where this is a

more significant source of phosphorus. This work

supports the hypothesis that in minimally disturbed

watersheds, atmospheric deposition can be an impor-

tant source of phosphorus.

The results also indicate that nitrogen and phos-

phorus export rates can be significantly greater during

melt than baseflow. There is a large amount of

variation in export rates between seasons and land

uses, which has implications for management strate-

gies and predicting how climate change will impact

the delivery of nutrients (LaBeau et al. 2015).

Table 6 Results of residual linear regression analysis comparing model residuals and basin parameters

Model Season R2 Coefficients Intercept

% Cultivated % Developed Runoff (cm yr-1) Basin Area (910 km)2

TN Baseflow 0.119** 20.002** -0.004 -0.003 -0.018* 0.244***

Melt 0.043 -0.001 0.005 0.000 -0.012 0.020

Annual 0.313* 20.004** -0.004 -0.007 -0.012* 0.564*

TP Baseflow 0.097* -0.0012 0.009*** 0.001 0.002 -0.076

Melt 0.189*** 0.005*** -0.004 0.001* 0.005 20.326***

Annual 0.157 -0.001 0.005 -0.011 -0.010 0.532

Bold values indicate p\ 0.05

* p\ 0.10; ** p\ 0.05; *** p\ 0.01
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Resources for watershed management should be

allocated based on the anticipated improvement in

water quality (Destouni et al. 2006). Depending on the

time of year, the dominant nutrient source in a

watershed, and the locations of sources with respect

to surface water, the effectiveness of different man-

agement strategies may vary. Spatially explicit nutri-

ent models provide a method to estimate the efficiency

of different strategies and the potential areas and

sources that should be targeted.

With the exception of the annual models, the

calibration dataset consists only of data collected from

the Grand River, Saginaw Bay, Boardman–Charle-

voix, and Muskegon River watersheds while the

validation dataset contains samples covering nearly

the entire Lower Peninsula. The validation dataset has

high R2 values and closely follows the 1:1 line,

demonstrating the geographic and temporal trans-

portability of the model.

The model could be improved with a more

detailed description of the groundwater pathway.

Currently the model uses a surface travel distance to

describe groundwater attenuation and uses a surface

watershed boundary to determine nutrient inputs to

the groundwater pathway. The groundwater path-

way, though often ignored, may be a significant

pathway for nutrient delivery in the Great Lakes

(Robinson 2015). A number of factors affect the

transport of nutrients in this pathway and a better

description of groundwater travel pathway would

especially improve model predictions in watersheds

that have groundwatersheds that are significantly

different from surface watersheds; the addition of

travel time in the groundwater pathway would also

improve performance since groundwater residence

time can be highly variable.

In addition, the presented model does not incorpo-

rate the effect of wetlands and impoundments, which

have been shown to impact the ability of watersheds to

retain nutrients (Robertson and Saad 2011). A spatially

explicit description of these features should improve

the model performance and provide insight to their

impact on nutrient loading. Finally, the bias of the

phosphorus models needs be explored further; perhaps

a better description of sediment delivery is needed.

This work demonstrates the value of a spatially

explicit description of nutrient sources and delivery

mechanisms. Not only does the model perform well in

watersheds with diverse conditions and scales, it also

provides information beyond prediction of nutrient

loads, including seasonal dynamics, and source appor-

tionment of delivered nutrients. It performs as well as

other regional scale models (such as SPARROW), and

the annual nitrogen model has less land use bias

related to cultivated land area compared to other

regional nitrogen models (modeling loads in New

England) (Alexander et al. 2002; Robertson and Saad

2011). The model performed consistently across

diverse watersheds with little to no land use bias

(particularly the TN models) and across two different

seasons. This suggests that this model has the potential

to perform well in other regions and for other time

periods. In addition, the inclusion of spatially explicit

pathways makes it possible to identify the contribution

of concentrated sources such confined animal feeding

operations, septic systems, and golf courses. While the

relative contribution of these sources may be small at

the regional scale, the model results suggest that

locally, they can be a significant source of nutrients to

surface water, especially in watersheds dominated by

urban and suburban land uses. Most significantly,

unlike most regional scale models that exist in the

literature, this model is able to provide information on

the differences in seasonal sources, pathways, and

processes and defines within basin variability without

a significant increase in model complexity.
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