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Using artificial intelligence for CyanoHAB niche modeling:
discovery and visualization of Microcystis–environmental
associations within western Lake Erie
David F. Millie, Gary R. Weckman, Gary L. Fahnenstiel, Hunter J. Carrick, Ehsan Ardjmand,
William A. Young II, Michael J. Sayers, and Robert A. Shuchman

Abstract: Cyanobacterial harmful algal blooms (CyanoHABs), mainly composed of the genus Microcystis, occur frequently
throughout the Laurentian Great Lakes. We used artificial neural networks (ANNs) involving 31 hydrological and meteorological
predictors to model total phytoplankton (as chlorophyll a) and Microcystis biomass from 2009 to 2011 in western Lake Erie.
Continuous ANNs provided modeled-measured correspondences (and modeling efficiencies) ranging from 0.87 to 0.97 (0.75 to
0.94) and 0.71 to 0.90 (0.45 to 0.88) for training–cross-validation and test data subsets of chlorophyll a concentrations and
Microcystis biovolumes, respectively. Classification ANNs correctly assigned up to 94% of instances for Microcystis presence–
absence. The influences of select predictors on phytoplankton and CyanoHAB niches were visualized using biplots and three-
dimensional response surfaces. These then were used to generate mathematical expressions for the relationships between
modeled CyanoHAB outcomes and the direct and interactive influences of environmental factors. Based on identified conditions
(�40 to 50 �g total phosphorus (TP)·L−1, 22 to 26 °C, and prolonged wind speeds less than �19 km·h−1) underlying the likelihood
of occurrence and accumulation of phytoplankton and Microcystis, a “target” concentration of 30 �g TP·L−1 appears appropriate
for alleviating blooms. ANNs generated robust ecological niche models for Microcystis, providing a predictive framework for
quantitative visualization of nonlinear CyanoHAB–environmental interactions.

Résumé : Les fleurs d'eau de cyanobactéries nuisibles (CyanoHAB), constituées principalement du genre Microcystis, sont
fréquentes dans tous les Grands Lacs laurentiens. Nous avons utilisé des réseaux neuronaux artificiels (« ANNs ») incluant
31 prédicteurs hydrologiques et météorologiques pour modéliser la biomasse de phytoplancton totale (chlorophylle a) et de
Microcystis, de 2009 à 2011, dans la partie occidentale du lac Érié. Des ANNs continus ont fourni des correspondances
modèle-mesures (et des valeurs d'efficacité de la modélisation) allant de 0,87 à 0,97 (0,75 à 0,94) et de 0,71 à 0,90 (0,45 à 0,88)
pour des sous-ensembles de données d'entraînement–de contrevalidation et d'essai des concentrations de la chlorophylle a
et des biovolumes de Microcystis, respectivement. Les ANNs de classification ont affecté correctement jusqu'à 94 % des cas
d'absence ou de présence de Microcystis. Les influences de prédicteurs sélectionnés sur les niches de phytoplancton et de
CyanoHAB ont été visualisées à l'aide de diagrammes de double projection et de surfaces de réponse tridimensionnelles, qui
ont ensuite été utilisés pour produire des expressions mathématiques pour les relations entre les CyanoHAB modélisées et
les influences directes et interactives de facteurs environnementaux. À la lumière des conditions cernées (�40 à 50 �g phosphore
total (PT)·L−1, de 22 à 26 °C et des vitesses du vent soutenues inférieures à �19 km·h−1) sous-tendant la probabilité de présence et
d'accumulation de phytoplancton et de Microcystis, une concentration « cible » de 30 �g PT·L−1 semble adéquate pour réduire les
fleurs d'eau. Les ANNs ont produit des modèles de niche écologique robustes pour Microcystis, fournissant ainsi un cadre
prévisionnel pour la visualisation quantitative d'interactions non linéaires entre le milieu ambiant et les CyanoHAB. [Traduit par
la Rédaction]

Introduction
The characterization of biotic responses to environmental con-

trols, along with the dynamics of those responses, fuels ecological
modeling on local scales and forms the foundation for regional
forecasting efforts. Ecological niche models (inclusive of species

distribution models; see Peterson 2006) are empirical tools relat-
ing biotic occurrence or abundance to a locale’s environmental or
geographical characteristics and typically are based upon statisti-
cally or theoretically derived response surfaces (Guisan and Thuiller
2005). Response surfaces are utilized by researchers to (i) assess
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predictive capability or uncertainty of a conceptual model for
biotic distributions, (ii) visualize functional environmental,
climatic, and (or) spatial influences upon biota operating on
dissimilar scales, and (iii) support conservation prioritization and
resource management (Austin 2002; Guisan and Thuiller 2005;
Peterson 2006). Such an “informatics” approach to data-driven
modeling (see Millie et al. 2011, 2013; Michener and Jones 2012)
affords the means to collectively mine, model, and visualize
biota–environmental associations within aquatic survey data. Yet,
predictive success for and knowledge derivation arising from
such models are “driven” by technical innovation, contingent
upon the suitability and robustness of modeling software (Elith
and Leathwick 2009; Thuiller et al. 2009).

Expansive accumulations of the cyanobacterium Microcystis
aeruginosa have become commonplace within productive waters
of the Laurentian Great Lakes and are professed to threaten
aquatic resources and public health. Such cyanobacterial harmful
algal blooms (CyanoHABs) are fueled by excessive loading of an-
thropogenic nutrients (particularly phosphorus, P), warm temper-
atures, and water column stratification (Davis et al. 2009, 2010;
Paerl et al. 2011a; O’Neil et al. 2012). Although point-source loading
has been reduced within the Lakes’ nearshore waters (Dolan and
Chapra 2012), P remains a primary nonpoint source contaminant
(DeMarchi et al. 2010; Bridgeman et al. 2012; Michalak et al. 2013)
and is considered the most important nutrient regulating phyto-
plankton growth (Fahnenstiel et al. 1998; International Joint
Commission 2014; c.f. Chaffin et al. 2011, 2013).

Empirical modeling of extrinsic environmental influences upon
intrinsic phytoplankton patterns typically has utilized classical mul-
tivariate analytics, with their parametric assumptions and (or)
limitations (i.e., linearity between predictor–response variables, in-
dependence and homoscedasticity of errors, normality of error dis-
tributions). Yet, nonlinearity in population biomass–growth and
environmental interactions dominate aquatic time series (e.g.,
Pascual and Ellner 2000; Austin 2002). Great Lakes’ waters im-
pacted by CyanoHABs exhibit spatially discontinuous hydro-
logical and ephemeral meteorological variances (Millie et al.
2006a, 2009; De Stasio et al. 2008). As a result, predictable linear
associations among quasiperiodic, often chaotic environmental
conditions and the Lakes’ phytoplankton typically do not occur, and
one’s use of conventional parametric analytics to model CyanHAB–
environmental associations appears ill-posed and formidable in
effort (see Downing et al. 2001; Millie et al. 2011).

To this end, artificial neural networks (ANNs) identify and re-
produce recurring nonlinear patterns within large databases dis-
playing sizable complexity and variance. These adaptive artificial
intelligence agents do not require a known probability distribu-
tion of variables and provide impartial prediction, whereby
patterns between predictors (e.g., environmental conditions) and
responses (e.g., species biomass) are discovered and mapped
(Jørgensen et al. 2009; Quetglas et al. 2011). However, unlike para-
metric analytics that provide users with comfortable degrees of
transparency and comprehension, predictor–response relation-
ships within ANNs are encoded within architectures that (super-
ficially) appear incomprehensible in regard to user-friendly knowledge
(c.f. Gevrey et al. 2003, 2006).

Proactive assessments for and forecasting of aquatic health and
environmental status is the goal of many federal, state, and pri-
vate partnerships. To incorporate prediction of local CyanoHAB
distributions (both realized and potential) into forecast simula-
tions, a modeling technology capable of identifying and repro-
ducing nonlinear associations among interacting environmental
conditions and the localized, time-specific patterns of HAB bio-
mass accumulations is required. Here, we (i) formulate ANNs to
model total phytoplankton and Microcystis within western Lake
Erie using select hydrological and meteorological variables as
predictors, (ii) extract, from trained networks, the functional
influence of environmental predictors upon modeled responses,

(iii) evaluate the adequacy of ANNs to derive qualitative or quan-
titative knowledge concerning environmental influences of im-
portance to CyanoHAB potentials, and (iv) discuss the relevancy of
results in regard to resource stewardship of the Great Lakes.

Methods

Study site
The western basin of Lake Erie (USA and Canada; Fig. 1) comprises

�13% of the Lake’s surface area (3300 of 25 690 km2; Hartman 1973)
and has a water retention time of �51 days (2.6 years for the entire
lake). Major tributaries impacting the basin include the Detroit
River (draining the oligotrophic “upper” Great Lakes and con-
tributing �80% to 90% of total inflows) and the nutrient- and
sediment-laden Maumee River (draining an agricultural–industrial–
urban watershed and adding �10% of the basin’s total inflows).
The basin is shallow (mean and maximum depths of 7.4 and 19 m)
and resembles a sublittoral zone with respect to hydrologic con-
ditions; waters warm and cool rapidly with water column strati-
fication only occurring during wind-free periods (Chandler 1940;
Bolsenga and Herdendorf 1993). Over the last decade, CyanoHABs
have become a dominant component of the mid- and late-summer
phytoplankton with toxic populations of Microcystis commonplace
(Millie et al. 2009; Chaffin et al. 2011, 2013; Michalak et al. 2013).

Data acquisition
As a component of the Center of Excellence for Great Lakes

and Human Health initiative by the National Oceanic and Atmo-
spheric Administration, surveillance monitoring was conducted
throughout western Lake Erie during 2009 to 2011. Master sam-
pling stations were established within vicinity of the confluence
of the Maumee River and the lake proper (Fig. 1), with whole-water
sampling (�1 m depth) conducted at these sites on a biweekly
basis from July through September (2009) and June through Octo-
ber (2010 and 2011). Owing to the expansive distribution of the
2011 bloom event (see Stumpf et al. 2012; Michalak et al. 2013),
supplemental sampling was extended throughout the entire ba-
sin and into the western region of the Lake’s central basin during
late summer of the year (Fig. 1). Water for abiotic and biotic char-
acterization was collected using clean Niskin bottles (Millie et al.
2009).

Select abiotic variables derived from whole-water collections
included the following (as unit; abbreviation): water temperature
(oC; TEMP); water clarity, as Secchi depth (KD; Secchi); total, total-
dissolved, and soluble-reactive phosphorus (�g·L−1; TP, TDP, and
SRP, respectively); nitrate- and ammonia-nitrogen (mg·L−1; NO3-N
and �g·L−1; NH4-N); soluble silica (mg·L−1; SolSi); and chloride
(mg·L−1; CL). Analytical procedures for abiotic hydrological vari-
ables were presented in Millie et al. (2006a, 2009). Meteorological
variables, including wind direction (compass direction; WndDir),
wind speed (m·s−1; WndSpd), ambient temperature (°C; ATEMP),
and total daily irradiance (watts (W)·m−2; TotIR) were acquired
from NOAA’s National Buoy Data Center (Station THLO1, Toledo
Light No. 2; http://www.ndbc.noaa.gov) and the National Solar Ra-
diation database (http://rredc.nrel.gov/solar/old_dasta/nsrdb). Be-
cause surface and near-surface phytoplankton accumulations
reflect contemporary and preceeding conditions resulting from
short-term meteorological events, a “lagged” time series (as −1- to
−10-day running maxima, totals, and means of each variable; here-
after, variableMax-#Days, variableTot-#Days, and variableAve-#Days, re-
spectively) was added to the dataset. From these contemporary
hydrological and contemporary and time-lagged meteorological
predictors, �13 600 data cells were generated for analysis and
modeling.

Biotic variables derived from whole-water collections included
chlorophyll a (�g·L−1, CHL a) — a proxy for total phytoplankton
biomass, and total Microcystis biovolume (�m3·L−1). Concentrations
of CHL a were determined via in vitro fluorometry, subsequent
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to photopigment extraction with DCMU (3-(3,4-dichlorophenyl)-1,
1-dimethylurea; after Millie et al. 2010). Microcystis was enumer-
ated microscopically via Utermöhl’s (1958) sedimentation tech-
nique, with cell densities converted to biovolumes by means of
geometric figures best approximating the shape of individual
taxa. In western Lake Erie, the type species of M. aeruginosa can
account for up to �95% of the total Microcystis abundance; accord-
ingly, the type species was combined with its morphospecies (i.e.,
Microcystis novacekii, Microcystis wesenbergii, and Microcystis botrys) to
produce a unified species complex (Otsuka et al. 2001; Millie et al.
2009).

Data characterization and modeling
Data distributions and relationships were characterized using

basic statistics and pairwise scatterplots. A principal component
analysis (PRIMER version 6.1 software; Primer-E Ltd., Plymouth,
UK) utilized Euclidean distances to order master sampling dates
and sites with respect to environmental variables. The uncertain-
ties of hydrological and meteorological predictors for model de-
velopment were assessed via a coefficient of variation (Håkanson
2000). Annual and monthly differences among CHL a concentra-
tions and Microcystis biovolumes were assessed using a nonpara-
metric Kruskal–Wallis analysis of variance (ANOVA) on ranks (see
Results), with pairwise comparison of means completed via a
Dunn’s test (SigmaPlot software; Systat Software Inc., Chicago,
Illinois, USA). Owing to the large data range, biovolumes were
log-transformed prior to analyses to improve computational ana-
lytics and enhance data visualization.

With ANNs incorporating supervised learning, CHL a concen-
trations were modeled from environmental predictors as a con-

tinuous problem, whereas Microcystis biovolumes were modeled
as classification and continuous problems. Multilayer perceptrons
(MLPs) utilizing a backpropagation learning algorithm were orig-
inated (NeuroSolutions version 6.0 software; NeuroDimension,
Inc., Gainesville, Florida USA), as follows:

[CHL a] or biovolumes� f{WP1,P3
[ f(WX1,P1

·X1�WX2,P1
·X2…WXi,P1

·Xi��1)]}

� f{WP2,P3
[ f(WX1,P2

·X1�WX2,P2
·X2…WXi,P2

·Xi��2)]}

� f{WPj,P3
[f(WX1,Pj

·X1�WX2,Pj
·X2…WXi,Pj

·Xi��j)]}

where X1,2,…,i are predictor variables, P1,2,3,…,j are processing ele-
ments, WX1,2,...,i,P1,2,3,...,j

are scalar weights, and �1,2,…,j is the error (after
Principe et al. 2000). Topologies were optimized for the number of
processing elements within hidden layers and the types of trans-
fer functions (e.g., sigmoid, hyperbolic tangent) and learning rules
(e.g., conjugate gradient, momentum; see Millie et al. 2012, 2013).
Data vectors were assigned randomly to subsets for network train-
ing (to “fit” the data), cross-validation (to provide unbiased esti-
mation of prediction), and testing (to assess performance) of 60%,
15%, and 25% of data, respectively. During training, learning and
momentum rates and step sizes were allowed to vary, thereby
accelerating learning and ensuring convergence to a global mini-
mum. For modeling continuous concentrations or biovolumes,
performance statistics included correspondence (�), root mean
square error (RMSE), and modeling efficiency (ME). For categorical
networks, performance metrics included receiver operating char-
acteristics (i.e., accuracy in case ordering, true positive or negative

Fig. 1. Sampling stations throughout the western basin. Inset: Study area relative to the Laurentian Great Lakes and Lake Erie. Symbols for
master stations are labeled (WE1 to WE9, solid squares), whereas supplemental stations only are delineated as open circles.
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rates, and false positive or negative rates in classification for the
confusion matrices; Brown and Davis 2006).

Assessing and visualizing predictor–response relationships
The architecture, weights, biases, and transfer-threshold functions

for trained networks were incorporated into a data spreadsheet.
Connected weights and global sensitivity analyses identified hy-
drological and meteorological variables having the greatest in-
fluence upon network prediction. Connected weights analysis
incorporated final synaptic weight values to identify the relative
importance of input variables (Olden and Jackson 2002). For
global sensitivity (c.f. local sensitivity analysis; Sun et al. 2012), a
state-based approach was utilized. Briefly, input data vectors as-
sociated with the values of a predictor variable were assigned
to a bin (state) along a presumed normal distribution where
every state was equivalent to a predetermined variance (0.2 to
0.5 sigma, �) of that distribution. Quantitative uncertainties for
predictors upon the modeled output were measured as a function
of dithered alterations for each variable (up to ±6 standard devia-
tions from the mean) and across its data range.

To extend model prediction–uncertainty to more than a “one
input – one output” relationship (like that provided by connected
weights and sensitivity analyses), variables reported to interac-
tively influence Microcystis occurrence and (or) accumulation (e.g.,
nutrients, TEMP, WndSpd; see Davis et al. 2009, 2010; Paerl et al.
2011a; Paerl and Otten 2013; O’Neil et al. 2012) were chosen from
candidate predictors for detailed analysis and model visualiza-
tion. Based on sensitivity analysis, select (pairs of) predictors were
varied across their data distributions, with three-dimensional (3D)
response surfaces for CHL a concentrations and Microcystis bio-
volumes generated via reproduced network computations (after
Millie et al. 2012, 2013). Two-dimensional (2D) response plots for
select predictors and concentrations–biovolumes were derived
(via averaging across contrasting variables within 3D surfaces),
with predictor valuations relating to half-maximal concentrations–
biovolumes (akin to EC50/IC50 metrics) calculated via four-parameter
logistic equations; SigmaPlot software). Simplistic curvilinear equa-
tions were fit to the response surfaces–biplots (TableCurve 2D and
3D softwares; Systat, Inc., Chicago, Illinois, USA) to algorithmically
characterize the relationship(s) between the modeled responses and
singular and interacting predictors.

Results
With respect to abiotic variables, spatial and temporal gradi-

ents of master sampling sites were evident within the principal
components ordination. Values of Secchi and nutrient concentra-
tions (TP, TDP, NO3-N) were lesser and greater, respectively, at
sites closest to the confluence Maumee River and the Lake (Fig. 2A)
than at sites offshore, predictably reflecting the decreasing im-
pacts of tributary-derived nutrient and sediment “loads” with in-
creased distance from the River mouth. Temperature (TEMP,
ATEMP) and wind (WndSpd, WndDir) were variables most respon-
sible for differentiating temporal groups (Fig. 2B). Although dif-
ferences among inter-annual station groups were not readily
apparent, annual means for TEMP and TP concentrations were
greater for 2010–2011 (�24 °C and 56 �g·L−1) than for 2009 (22 °C
and 42 �g·L−1; p ≤ 0. 001 and p ≤ 0. 05, respectively). Intra-annually,
mean TEMPs were greatest for June, July, and August (24 to 26 °C;
p ≤ 0. 001), with maximal mean TP concentrations occurring in
June (�68 �g·L−1) and to a lesser degree, August and September (53
to 59 �g·L−1; p ≤ 0. 001). However, the first and second principal
components explained only 51.3% of the total variance, whereas
the cumulative variance explained by successively adding the
third, fourth, and fifth component axes was 66.5%, 75.7%, and
81.6%, respectively. The lesser and consistent coefficients of vari-
ation for meteorological (compared with hydrological) variables
and to a lesser degree, Secchi and CL, identified these predictors to

the have the least dispersion across their data ranges and as such
were the most conservative predictors (Fig. 2C). In contrast, the
nutrients TDP, SRP, NH4-N, and NO3-N displayed the greatest dis-
persion among candidate hydrological predictors.

Fig. 2. (A and B) Two-dimensional principal components (PCs)
ordination of master stations based on water column
physical–chemical and meteorological variables. Percentages of total
variability explained by physical or chemical variable for each
principal component are indicated. Stations are denoted as a
function of (A) distance from Maumee River mouth (see Fig. 1 for
station locations and label identifications) and (B) sampling month.
(C) Box-and-whisker plots for coefficients of variation (standard
deviation of the mean) derived from monthly means of hydrological,
meteorological, and biotic variables. For each box, the dotted line
indicates the mean value, boundaries closest or farthest to the solid
(median) line signify the respective 25th and 75th data percentiles,
the whiskers (error bars) denote the 10th and 90th data percentiles,
and the dots represent the 5th and 95th percentiles of data outliers. See
Methods for variable abbreviations.
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CHL a concentrations and Microcystis biovolumes displayed asym-
metrical, non-normal distributions (as determined by a Shapiro–
Wilks test, p < 0.001 for both variables, and skewness values of
2.17 and −1.47 for concentrations and biovolumes, respectively),
thereby necessitating nonparametric characterization. Concen-
trations of CHL a were moderately dispersed across their data
range (from 0.35 to 194 �g·L−1; Fig. 2C). Mean annual concentra-
tions (�31 to 35 �g·L−1) at all stations in 2010 and 2011 were ap-
proximately twofold greater than concentrations in 2009 (p < 0.001;
Fig. 3A). The greatest mean concentrations occurred in August and
September (�37 �g·L−1), with the least mean concentration in
October (Fig. 3B; p < 0.001). The distribution for Microcystis biovol-
umes was zero-inflated (�20% of samples having no Microcystis
present) and displayed the greatest dispersion of any variable
across its data range (from 0 to 1.17 × 1012 �m3·L−1; Figs. 2C, 3B).
Annual mean biovolumes were greater in 2011 (�107.55 �m3·L−1 at
master and surveillance stations) than those in 2009 and 2010
(Fig. 3A; p ≤ 0.05). The greatest monthly mean biovolumes oc-
curred in August and September (�108.41 and 107.37 �m3·L−1, re-
spectively), with the least mean biovolumes in June and October
(Fig. 3B; p ≤ 0.001).

Continuous CHL a modeling
MLPs, utilizing distinct supervised learning topologies, distinct

transfer functions, and learning algorithms, were surveyed as
models for CHL a concentrations. The best-performing network
(31 candidate inputs, 15, 14, and 10 processing elements (PEs)
within hidden layers (HLs) one, two, and three with hyperbolic
tangent transfer functions and implementing a momentum learn-
ing algorithm) produced an enormously complex topology with
65 100 synaptic influences upon the modeled response. This MLP,
developed with training and cross-validation data subsets prior to
its application to test data, provided an adequate estimate of pre-
diction (Figs. 4A, 4B), with the best holistic performance metrics
across all evaluated models. The network performed better in
estimatingconcentrationswithinthetrainingandcross-validationdata
subsets (modeled-measured � and MEs ranging from 0.89 to 0.97
and 0.78 to 0.94, respectively) than those of the test data (values
for modeled-measured values for � and ME of 0.87 and 0.74, re-
spectively; see Discussion). Phosphorus, both TP and TDP, was
identified via connected weights analysis (Fig. 4C) to have a con-
sistent principal impact upon modeled concentrations, with TP
confirmed via sensitivity analysis to have the greatest predictive
influence (Fig. 4D).

The 3D surfaces and 2D plots arising from the optimal model
depicted the interacting influences and singular significances,
respectively, of select predictors (TP, TEMP, WndSpdAve-3, and
NO3-N; Figs. 5A, 5B) upon CHL a concentrations; variables dis-
played nonlinear relationships with CHL a, with modeled concen-
trations greatest at maximal TP concentrations and TEMPs and
minimal NO3-N concentrations and prolonged WndSpds. From the 2D
plots, 52 �g TP·L−1, 23 °C, 2.7 mg NO3-N·L−1, and WndSpdAve–3 of
18 km·h−1 were identified (via logistic equations) as conditions at
which the response concentrations were one-half of maximal
modeled estimates. Nonetheless, biplots portrayed only the “av-
erage” influence of predictor variables upon modeled CHL a. For
example, parallel “slices” taken across 3D surfaces identified the
relationship between modeled CHL a and TP at TEMPs ≤ �20 °C to
be relatively uniform and only slightly curvilinear, having mini-
mal slope (Fig. 5C). Thereafter, the response slope increased sub-
stantially and became progressively nonlinear with increasing
TEMPs. Equations fit to the response surfaces and 2D plots quan-
titatively described modeled CHL a conditional to both predictor
interaction and singular variable effects (see online Supplemen-
tary Material equations1).

Continuous Microcystis modeling
An MLP (consisting of 30 720 synaptic weights arising from 32

hydrological–meteorological predictors, 12, 10, and 8 PEs within
HLs one, two, and three with hyperbolic tangent transfer func-
tions and implementing a momentum learning algorithm) pro-
vided the best modeling performance for continuous Microcystis
biovolumes. This network performed better for training data than
for its application to test data (compare Figs. 6A, 6B). Modeled test
data mirrored measured data well at biovolumes greater than
�108 �m3·L−1, but generally overestimated measured data at lesser
biovoumes. Neither connected weights nor global sensitivity anal-
ysis identified any one (or few) predictor(s) to greatly influence
prediction of Microcystis to the exclusion of other variables
(Figs. 6C, 6D).

Assorted 3D surfaces and corresponding 2D plots depicted the
interacting influences and singular significances, respectively, of a
select predictor upon modeled Microcystis biovolumes (e.g., Figs. 7A,
7B). Selected predictors displayed unique, nonlinear relationships
with Microcystis, with ~50 �g TP·L−1, 26 °C, 1.5 mg NO3-N·L−1, and
WndSpdAve-3 of 23 km·h−1 identified (via logistic equations) as condi-
tions at which response biovolumes were one-half of maximal mod-
eled estimates. Maximal biovolumes occurred at conditions of

1Supplementary data are available with the article through the journal Web site at http://nrcresearchpress.com/doi/suppl/10.1139/cjfas-2013-0654.

Fig. 3. Total chlorophyll a concentrations and Microcystis
biovolumes at master and supplemental (-Suppl) stations as a
function of (A) sampling year and (B) month. Data are means +
standard error; totals that follow show data for chlorophyll a and
biovolumes, respectively: 2009, n = 127 (for both); 2010, n = 147 and
157; 2011, n = 31 and 33; 2011-Suppl, n = 62 and 74; June, n = 63
and 60; July, n = 101 and 100; August, n = 106 and 103; September,
n = 72 and 83; October, n = 35). Group means (designated by letters
with no superscript for concentrations and letters with the
superscript (=) for biovolumes) with distinct characters are different
at the 0.05 probability level.
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greater than ~100 �g TP·L−1 and 28 °C, and WndSpdAve-3 less than
~19 km·h−1. Similar to that observed for CHL a, 2D plots depicted
only the “average” influence of a predictor upon modeled biovol-
umes; parallel “slices” taken across 3D surface identified the mod-
eled biovolume–TP association at TEMPs greater than 24 °C to
approximate those at lesser TEMPs, but at a greater biomass ca-
pacity and with a lesser influence of TEMP at elevated TP concen-
trations (Fig. 7C). Equations fit to the 3D surface and 2D plots
quantitatively described modeled biovolumes conditional to pre-
dictor interaction and (or) singular variable effects (see online
Supplementary Material equations1).

Categorical Microcystis modeling
To balance the number of instances within the zero-inflated and

continuous portions of the data distribution and thereby imp-
rove the development of classification networks for Microcystis
presence–absence, a Synthetic Minority Over-sampling Technique
(SMOTE; Waikato Environment for Knowledge Analysis (WEKA)
software, version 3.7.10; http://www.cs.waikato.ac.nz/�ml/weka/)
was implemented. As a resampling tool for imbalanced data in
classification models (Chawla et al. 2002), SMOTE generated data

vectors through interpolation between neighboring minority val-
ues and selection of new values for all variables between the mi-
nority pair(s). Following SMOTE, a classification MLP for Microcystis
presence–absence (consisting of 53 760 synaptic weights arising
from 32 predictors, 14, 12, and 10 PEs within HLs one, two, and
three with sigmoidal transfer functions and implementing a mo-
mentum learning algorithm) ordered dualistic outcomes into
contingency matrices (Table 1). Networks effectively classified
training and cross-validation data, with class accuracies and er-
rors of 93.98 and 6.02% and 89.00 and 11.00%, respectively. Appli-
cation of the trained and cross-validated networks to test data
provided a slightly lesser model “fit” (class accuracy and error of
87.21 and 12.79%, respectively). A greater true presence rate (of
93.20%) than the true absence rate (of 58.82%) for test data likely
arose from the paucity of representative data vectors within the
holistic database (irrespective of using SMOTE, see Discussion).

Biotic (CHL a) and abiotic (WndSpd (both lagged and maxi-
mum), TotIR, ATEMP, TP) predictors were identified via sensitivity
analysis to have the greatest influences upon modeled classifica-
tion (Fig. 8A). Assorted 3D surfaces were constructed to depict the

Fig. 4. Modeled chlorophyll a concentrations as a function of measured concentrations in (A) training and cross-validation and (B) test data
subsets for the optimal continuous network. The dashed line represents a 1:1 relationship. (C) The relative share of prediction associated with
model inputs, as determined via the connected weights analysis. (D) Results of state-based sensitivity analyses across a variation of predictors.
The initial 12 predictors having the greatest influence in connected weights–sensitivity analyses are depicted. See Methods for variable
abbreviations.
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interacting influences of the (aforementioned) abiotic predictors
upon modeled Microcystis presence or absence (data not shown).
From the contrasting, nonlinear 2D plots arising from averaging
the singular variable influences across 3D response surfaces, the
likelihood of Microcystis occurrence was greater with increasing TP
concentrations and ATEMPs and less with increasing WndSpdAve–3
(Fig. 8B). Specifically, the regularity in Microcystis occurrence was
generally assured (i.e., probabilities greater than 0.5) during con-
comitant conditions of TP and ATEMPs greater than 45 mg·L−1 and
21 °C, respectively, and WndSpdsAve–3 less than 20 km·h−1. Al-
though the sensitivity analysis identified TotIR to influence mod-
eled classifications, variability in this predictor did not appear to
dramatically alter Microcystis occurrence (as likelihood probabili-
ties were �0.6 or greater).

Discussion
In summarizing the theoretical aspects of species modeling as it

relates to phytoplankton blooms, Carrick (2011) affirmed that HAB
“niche space” arises from defined, albeit complex, environmental
and geospatial conditions and from which the parameterization
and prediction of species occurrence–distribution patterns can
emerge. In this context, important questions that modelers repeat-
edly address for dynamic and productive waters include the following:

(i) What is (are) the influence(s) of singular or interacting suites of
predictor (environmental) variables upon a response (biotic) vari-
able? and (ii) How does one visualize and quantify the predictive
uncertainties for this (these) environmental–biotic relationship(s)?
Here, an “informatic” approach affording the identification, visu-
alization, and quantification of environmental conditions relat-
ing to bloom-forming phytoplankton within western Lake Erie
was presented. In characterizing CHL a concentrations and Mi-
crocystis biovolumes and presence–absence as a function of select
physical–chemical predictors, ANNs proved to be robust ecological
niche models; modeled-measured values of � for continuous ANNs
ranged from 0.87 to 97 and 0.70 to 0.94 for CHL a and Microcystis
biovolumes, respectively, and classification networks correctly as-
signed up to 94% of instances for Microcystis presence–absence. Aris-
ing from the data-assimilative models, 3D response surfaces and 2D
plots portrayed the nonlinear uncertainties associated with phyto-
plankton and Microcystis “niche space” within the distribution
boundaries of select hydrological–meteorological predictors. In ad-
dition, the chosen pedagogical approach allowed generation of
simplistic equations for the singular or interacting relationship(s)
between modeled outcomes and select predictor variables.

Local (i.e., hydrological) and regional (i.e., meteorological) fac-
tors were interactively associated with modeled phytoplankton

Fig. 5. (A) Three-dimensional (3D) response surface for chlorophyll a concentrations as a function of total phosphorus (TP) and
temperature (TEMP), as derived from the optimal artificial neural network. (B) Two-dimensional (2D) response plots for concentrations as a
function of TP, TEMP, mean 3-day wind speed (WndSpdAve-3), and nitrate-nitrogen (NO3-N), as averaged across 3D surfaces of interacting
variable pairs. Predictor valuations relating to one-half of the maximum, modeled concentrations are indicated. (C) 2D depictions of parallel,
vertical “slices” taken across the modeled 3D surface as a function TEMP and TP. The changing shape of the “slices” illustrates the nonlinear
interaction among variables.
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and Microcystis biomass (c.f. Paerl et al. 2011a). Classification net-
works identified “baseline” conditions signifying an occurrence
likelihood (i.e., probability ≥0.50) for Microcystis presence within
samples. During concurrent instances in which water column TP
was �40 to 45 �g TP·L−1, ATEMP was �21 °C, and WndSPdAve–3 was
less than �20 km·h−1, Microcystis was certain (probabilistically)
to be present. In models for continuous data distributions, the
TP concentrations for half-maximal CHL a concentration and
Microcystis biovolumes were nearly exact (�52 �g·L−1). Such a rela-
tively large TP concentration may have arisen as a consequence of
adaptions by Lake Erie phytoplankton to the nutrient-enriched
environment in which they occur (Reynolds 2006). Alternatively,
the influence of TEMP upon CHL a and Microcystis accumulations
differed; half-maximal biovolumes occurred at TEMPs greater
(�24 to 26 °C) that that for CHL a concentrations (�22 °C). Cyano-
bacteria are known to exhibit optimal growth rates at water col-
umn temperatures typically in excess of 25 °C (Paerl and Huisman
2008). The lesser TEMP identified for CHL a likely arose from the
presence or dominance of influential taxa other than Microcystis
and possessing distinct autecological requirements (e.g., chlo-
rophytes and diatoms) within the Lake throughout the year
(Nicholls 1997; Smol and Stoermer 2010; Allinger and Reavie 2013).

Predictive uncertainties for CHL a concentrations and Microcystis
biovolumes largely were associated with contemporary or time-
lagged variables indicative of water column nutrient sufficiency
(TP–TDP–SRP and NO3-N), and mixing (WndSpd–WndDir) and
TEMP, ambient meteorological conditions (TotIR, ATEMP), and (or)
proxy measurements of phytoplankton biomass (Secchi) and trib-
utary influences (CL; refer to Figs. 4 and 6). Dependence upon
such variables for empirical modeling of near-surface phytoplank-
ton accumulations was not surprising; nutrient enrichment, hy-
drological stability, increased irradiance, and warm temperature are
conditions that collectively favor (localized) Microcystis prevalence
within lentic systems affected by tributary inflows (such as western
Lake Erie). Nevertheless, distinctions between causality and correla-
tive processes (in regards to phytoplankton–CyanoHAB biomass and
interactive physical–chemical associations) are difficult to formu-
late. The empirical linkages among phytoplankton–CyanoHABs and
identified environmental conditions arose from an observational da-
tabase, with no experimental corroboration. The temporal inconsis-
tencies for CHL a concentrations and Microcystis biovolumes in
western Lake Erie were considerable; inter-annual mean concen-
trations and biovolumes varied up to twofold and 1.25 orders of

Fig. 6. Modeled Microcystis biovolumes as a function of measured biovolumes in (A) training and cross-validation and (B) test data subsets for
the optimal continuous network. The dashed line represents a 1:1 relationship. (C) The relative share of prediction associated with model
inputs, as determined via the connected weights analysis. (D) Results of state-based sensitivity analyses across variations of predictors. The
initial 12 predictors having the greatest influence in connected weights–sensitivity analyses are depicted. See Methods for variable
abbreviations.
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magnitude, whereas intra-annual mean concentrations varied 2.7-
fold and 2.3 orders of magnitude, respectively. Meteorological
variables were the most conservative predictors, while hy-
drological predictors (particularly nutrients) displayed consider-

able dispersion across their data ranges. Almost one-fifth of the
total environmental variability could not be accounted for (by the
PCA), illustrating the extreme dynamics and heterogeneity in
the Lake’s hydrological–meteorological conditions. In any event,
network models provided an effective assessment of environmental–
biota complexity and interaction and yielded realistic, albeit
temporal-specific, portrayals for relationships of P, TEMP–ATEMP,
and WndSpd with the Lake’s bloom-forming phytoplankton.

Networks effectively modeled continuous concentrations–
biovolumes and presence–absence classification within training
data. Predictive performances for test data were slightly less; mod-
eled values generally underestimated concentrations greater than
45 �g CHL a·L−1 and over- or underestimated biovolumes less than
108 �m3·L−1, whereas the correct assignment for instances in
which biovolumes were absent declined substantially. These de-
creases in prediction performances likely arose from inadequate
data representation within training subsets, thereby precluding
optimal model development (e.g., Millie et al. 2006b). Instances
of <�45 �g CHL a·L−1 and >108 �m3 Microcystis·L–1 were 4.3- and
1.7-fold greater, respectively, in the database than instances of
greater and lesser concentrations or biovolumes, respectively.
Such insufficient data representation in a HAB monitoring data-
base, including that for Lake Erie, is not uncommon; because of costs
associated with sample acquisition–processing, data routinely is

Fig. 7. (A) Three-dimensional (3D) response surface for Microcystis biovolumes as a function of total phosphorus (TP) and
temperature (TEMP), as derived from the optimal artificial neural network. (B) Two-dimensional (2D) response plots for biovolumes as a function of
TP, TEMP, mean 3-day wind speed (WndSpdAve-3), and nitrate-nitrogen (NO3-N), as averaged across 3D surfaces of interacting variable pairs. Predictor
valuations relating to one-half of the maximum, modeled concentrations are indicated. (C) 2D depictions of parallel, vertical “slices” taken across
the modeled 3D surface as a function TEMP and TP. The changing shape of the “slices” illustrates the nonlinear interaction among variables.

Table 1. Contingency matrices for training, cross-validation, and test
data subsets arising from the optimal categorical (presence–absence)
artificial neural network for Microcystis.

Classification

Data subset (n, overall % correct) Absence Presence

Training (n = 299, 93.98%)
Absence 130 10
Presence 8 151
% Correct 94.20 93.79

Cross-validation (n = 100, 89.00%)
Absent 43 8
Present 3 46
% Correct 93.48 85.19

Test (n = 86, 87.21%)
Absent 10 7
Present 4 65
% Correct 71.43 90.28
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acquired during HAB presence or perceived event initiation (but
not so much when blooms are absent or environmental condi-
tions perceived unfavorable). For realistic data-driven models, it is
equally important to acquire data during periods when Cyano-
HAB biomass is minimal or absent (e.g., during early summer or
late fall, when TEMPs–ATEMPS and periods of shortened water
column stratification are unfavorable to bloom formation), as it is
during periods when blooms typically are present.

Nevertheless, biotic–abiotic associations within dynamic, often
chaotic aquatic systems (such as western Lake Erie) are intrinsi-

cally difficult to understand because associations are nonlinear,
distributed nonrandomly, and changing continuously in response
to the system state (Quetglas et al. 2011). The complex, high-
dimensional databases that characteristically arise from multi-
year surveillance programs require robust empirical analytics
incorporating rigorous, even unconventional, approaches for
data manipulation–minimization, identifying variable interac-
tions and trends and the derivation of user-friendly information
(Wood 2010; Michener and Jones 2012). Because of their capability
for detecting and reproducing recurring patterns within data
volumes exhibiting substantial “noise”, redundancy, autocorrela-
tion, nonlinearity, and outliers, ANNs afford powerful modeling
capabilities for water resources. Yet, ANNs require little expert
knowledge for their application and, aside from their “pure” pre-
diction capabilities, typically only provide qualitative informa-
tion regarding predictor influences (e.g., Figs. 4C, 4D and 6C, 6D).
Accordingly, many ecologists perceive ANNs to be numerical
enigmas having little relevance to ecological applications. This
(perceived) deficiency was overcome, in part, via the presented
pedagogical approach; ANN-modeled estimates for CHL a concen-
trations and Microcystis biovolumes and presence–absence were
depicted via multidimensional surfaces and biplots. Discrete
mathematical expressions then were generated to quantitatively
define physical–chemical associations and interactions with mod-
eled outcomes (see Millie et al. 2012, 2013).

Regression analysis often is used to predict algal biomass based
on an assumed correspondence with a single (or multiple) abiotic–
biotic variable(s) (e.g., Bachmann et al. 2001; Heffernan et al. 2010;
Stumpf et al. 2012). To compare network results with that of
parametric models, multiple linear regression was conducted to
estimate CHL a concentrations and Microcystis biovolumes using
identical independent variables as the ANNs. Measured:modeled
correspondences for regression models were less than that for
comparable ANNs, indicating that networks outperformed linear
models (data not shown). This greater performance was antici-
pated; in theory, an ANN encompasses linear regression and
because of a model architecture suited for identifying the non-
linear complexities of a biotic response to environmental forcing,
should perform as well or better than regression models (Gonzalez
2000; Millie et al. 2006b, 2012). However, multicollinearity existed
among the independent variables, and the predictor–response
surfaces and biplots arising from the ANNs depicted interacting,
nonlinear predictor influences. Although modeled residuals for
CHL a and biovolume regressions were independent (determined
by Durbin–Watson statistics), the errors of the predictor coeffi-
cients were not normally distributed around the regression esti-
mate (determined by Shapiro–Wilks tests), and response variables
displayed non-normal distributions and heteroscedasticity (see
Results). Such conditions invalidate the underlying assumptions
for linear regression (Reckhow et al. 1990; Osborne and Waters
2002), thereby resulting in parametric models that lacked merit.

Relevancy to Great Lakes stewardship
To mitigate eutrophication of the Great Lakes, federal and

state or provincial agencies within the United States and Canada
have made it a priority to evaluate relationships among anthropo-
genic impairments, environmental variability, and phytoplankton
production–abundance (e.g., International Joint Commission 2014).
To this end, knowledge of the empirical relationships between Cya-
noHABs and associated physical–chemical factors are integral to de-
veloping threshold criteria for decision-making in environmental
resource stewardship (e.g., shifts in ecosystem state, establishment
of nutrient “critical load” limits, extrinsic factor identification;
Groffman et al. 2006). Importantly, the considerable amount of
ecological redundancy displayed within phytoplankton provides
an assured confidence in one’s usage of data-driven metrics (such
as those presented here) for assessments pertaining to anthropo-
genic stressors and (or) natural disturbances (Carrick 2011).

Fig. 8. (A) Results of state-based sensitivity analyses for the optimal,
categorical network modeling Microcystis presence–absence. The
initial 12 predictors having the greatest influence are depicted.
Because categorical networks utilized entropy error functions,
modeled values represent the probability (≥0 to ≤1) for the
classification state. See Methods for variable abbreviations.
(B) Two-dimensional plots for modeled probabilities as a function of
total phosphorus (TP), ambient temperature (ATEMP), mean 3-day
wind speed (WndSpdAve-3), and total irradiance (TotIR) as averaged
across 3D surfaces of interacting variable pairs (not shown).
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The increased awareness concerning the timing for and amount
of nonpoint source contaminants (e.g., over the last two decades,
90% of the P loads delivered from the Maumee River occurs during
storm events; Ohio Environmental Protection Agency 2010) un-
derscores the necessity for knowledge concerning contemporary
nutrient dynamics and their impact upon Great Lakes phyto-
plankton (Great Lakes Commission 2012; Michalak et al. 2013).
The range in TP concentrations (�40 to 55 �g·L−1) underlying the
occurrence likelihood for and (or) significant accumulation of
Microcystis biovolumes and CHL a concentrations provided a realistic
portrayal for nutrient association(s) with Lake Erie CyanoHABs
and were similar to those previously identified for mitigating
CyanoHABs in northern temperate waters. Millie et al. (2011) noted
maximal Microcystis biomass within Saginaw Bay, Lake Huron
(1991–1996), concurrent with 40 to 45 �g TP·L−1, whereas Downing
et al. (2001) identified the “risk” of cyanobacterial dominance to
abruptly increase between 30 and 70 �g TP·L−1. As such, a water
column “target” concentration of 30 �g TP·L−1 appears appropri-
ate for alleviating contemporary bloom potentials in western
Lake Erie. Yet, this concentration is twofold greater than the con-
centration (of 15 �g TP·L−1) originally established for western Lake
Erie in the 1978 USA–Canada Great Lakes Water Quality Agree-
ment (Environment Canada and US Environmental Protection
Agency 2003) and upheld in the 2012 agreement (http://www.
ec.gc.ca/grandslacs-greatlakes/default.asp?lang=En&n=A1C62826-
1&offset=5&toc=show; last accessed 13 July 2014).

Although phytoplankton growth within productive waters
of the Great Lakes is presumed to be dependent upon P availa-
bility, assemblages episodically can be regulated by contrasting
N-limitation arising from nutrient-laden tributary inflows and the
ingestion–excretory activities of dreissenid mussels (see Conroy
et al. 2005; Millie et al. 2009, 2011). Here, N-containing compounds
displayed distinct dynamics with Microcystis biovolumes and TP
concentrations (on average across the database); minimal NO3-N
concentrations occurred during instances of maximal Microcystis
biovolumes (see Figs. 7B, 8B), and the likelihood for Microcystis
presence slightly increased with increasing NH4-N concentra-
tions, similar to that for TP availability (data not shown). Chaffin
et al. (2013) noted that Microcystis blooms in the western basin may
remain N-replete during instances of minimal NO3-N availability
(i.e., during mid- to late summer when cyanobacterial biomass is
greatest), whereas Paerl et al. (2011b) stated that the non-N2-fixing
Microcystis effectively competes for reduced forms of N (particu-
larly NH4-N), suggesting that uptake of water column regenerated
NH4-N (arising from lake sediments) might assist or support growth
during instances of N-limitation (c.f. Davis et al. 2010). Unfortunately,
the 2009–2011 database did not contain the necessary chemical vari-
ables for definitive assessments of nutrient limitation (via derivation
of total C:N:P metrics and (or) the proportion of reduced–oxidized
forms of N to organic forms) in regard to CyanoHAB presence–ab-
sence or biovolumes.

Empirical delineations of environmental conditions influenc-
ing CyanoHABs are restricted to the time-dependent, physical–
chemical makeup of the water body in question and the prevalent
ecotypes present within the assemblage (Chorus and Mur 1999). It
appears most realistic to interpret the aforementioned target con-
centration as a generalized threshold for Microcystis proliferation
within western Lake Erie during a specific period (2009 to 2011),
rather than a definitive regulatory target. Expansive Microcystis
blooms have been prevalent throughout the basin for over a de-
cade, during which time hydrological regimes, tributary nutrient
loadings, and meteorological conditions have changed annually.
Although the 2009 to 2011 database displayed extreme ranges for
CHL concentrations and Microcystis biovolumes, modeling efforts
likely encompassed only a “snapshot” of the Lake’s ecological
continuum and might not be representative of past or future
bloom events of greater magnitude and (or) variability. For exam-
ple, the CyanoHABs observed during 2010 and 2011 were not the

greatest bloom events (in terms of biomass magnitude) to occur
within western Lake Erie during the last decade. Millie et al. (2009)
reported a mixed, localized bloom composed of the chlorophyte
Pandorina morum (up to 727 �g chlorophyte Chl a·L−1) and the
cyanobacteria Microcystis spp. and Planktothrix spp. (up to 100 �g
cyanobacterial Chl a·L−1) within waters immediately offshore the
mouth of Maumee River during August 2003 (in the immediate
vicinity of stations WE4 and WE5 of the present study). Although
Pandorina is not known to produce toxins (like cells of Microcystis;
Dyble et al. 2008), the taxon is capable of producing allelopathic
chemicals inhibiting plant photosynthetic and mitochondrial
electron transport (Patterson et al. 1979) and may be influential in
the competitive dynamics of the Lake’s phytoplankton, including
Microcystis.

CyanoHAB forecasting across the Great Lakes requires model-
ing efforts having adequate fidelity to resolve localized, time-
specific bloom occurrences. Yet, the modeling of phytoplankton
displaying non-normal, heteroscedastic, and zero-inflated distri-
butions is onerous and its interpretation is obscure. The legiti-
macy of data-driven analytics is constrained by the amount of
system variability omitted from the sample distributions, partic-
ularly as it applies towards data “extremes” and the occurrence of
ecological “surprises” (Peek et al. 2003; Doak et al. 2008). Simplis-
tic, parametric models may not describe and (or) be appropriate
for the mosaic of interactive, nonlinear, and dynamic (even sto-
chastic) associations arising between assemblages and environ-
mental variables. Rather, adaptive nonlinear protocols will be
required. ANNs modeled the intrinsic variance and magnitude of
CHL a and Microcystis within western Lake Erie, affording a frame-
work from which environmental–CyanoHAB associations could
be visualized and quantifiable knowledge derived. Ideally, such
data-driven approaches can be used to parameterize conceptual
models projecting CyanoHAB mechanisms and causal relation-
ships across extended temporal–spatial coverage (e.g., Zhang et al.
2013).

Acknowledgements
This work is contribution Nos. 11 and 45 of the Great Lakes

Research Center, Michigan Technological University, and the In-
stitute for Great Lakes Research, Central Michigan University, re-
spectively. Funding for this work was provided, in part, by the
Michigan Tech Research Institute and by the National Oceanic and
Atmospheric Administration’s Office of Global Programs and Cen-
ter for Sponsored Coastal Ocean Research via the Center of Excel-
lence for Great Lakes and Human Health. Reference to proprietary
names are necessary to report factually on available data; how-
ever, the authors’ institutions neither guarantee nor warrant the
standard of a product and imply no approval of a product to the
exclusion of others that may be suitable.

References
Allinger, L.E., and Reavie, E.D. 2013. The ecological history of Lake Erie as re-

corded by the phytoplankton community. J. Gt. Lakes Res. 39(3): 365–382.
doi:10.1016/j.jglr.2013.06.014.

Austin, M.P. 2002. Spatial prediction of species distribution: an interface be-
tween ecological theory and statistical modelling. Ecol. Modell. 157(2–3):
101–118. doi:10.1016/S0304-3800(02)00205-3.

Bachmann, R.W., Hoyer, M.V., and Canfield, D.E., Jr. 2001. Evaluation of recent
limnological changes at Lake Apopka. Hydrobiologia, 448(1–3): 19–26. doi:10.
1023/A:1017564911355.

Bolsenga, S.J., and Herdendorf, C.E. 1993. Lake Erie and Lake St. Clair handbook.
Wayne State University Press, Detroit, Mich.

Bridgeman, T.B., Chaffin, J.D., Kane, D.D., Conroy, J.D., Panek, S.E., and
Armenio, P.M. 2012. From river to lake: phosphorus partitioning and algal
community compositional changes in Western Lake Erie. J. Gt. Lakes Res.
38(1): 90–97. doi:10.1016/j.jglr.2011.09.010.

Brown, C.D., and Davis, H.T. 2006. Receiver operating characteristics curves and
related decision measures: a tutorial. Chemom. Intell. Lab. Syst. 80(1): 24–38.
doi:10.1016/j.chemolab.2005.05.004.

Carrick, H.J. 2011. Niche modeling and predictions of algal blooms in aquatic
ecosystems. J. Phycol. 47(4): 709–713. doi:10.1111/j.1529-8817.2011.01042.x.

1652 Can. J. Fish. Aquat. Sci. Vol. 71, 2014

Published by NRC Research Press

C
an

. J
. F

is
h.

 A
qu

at
. S

ci
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.n
rc

re
se

ar
ch

pr
es

s.
co

m
 b

y 
U

N
IV

E
R

SI
T

Y
 O

F 
M

IC
H

IG
A

N
 o

n 
12

/0
6/

17
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 

http://www.ec.gc.ca/grandslacs-greatlakes/default.asp?lang=En&n=A1C62826-1&offset=5&toc=show
http://www.ec.gc.ca/grandslacs-greatlakes/default.asp?lang=En&n=A1C62826-1&offset=5&toc=show
http://www.ec.gc.ca/grandslacs-greatlakes/default.asp?lang=En&n=A1C62826-1&offset=5&toc=show
http://dx.doi.org/10.1016/j.jglr.2013.06.014
http://dx.doi.org/10.1016/S0304-3800(02)00205-3
http://dx.doi.org/10.1023/A%3A1017564911355
http://dx.doi.org/10.1023/A%3A1017564911355
http://dx.doi.org/10.1016/j.jglr.2011.09.010
http://dx.doi.org/10.1016/j.chemolab.2005.05.004
http://dx.doi.org/10.1111/j.1529-8817.2011.01042.x
http://www.nrcresearchpress.com/action/showLinks?doi=10.1139%2Fcjfas-2013-0654&crossref=10.1016%2Fj.jglr.2013.06.014&citationId=p_1_1
http://www.nrcresearchpress.com/action/showLinks?doi=10.1139%2Fcjfas-2013-0654&crossref=10.1023%2FA%3A1017564911355&citationId=p_3_1
http://www.nrcresearchpress.com/action/showLinks?doi=10.1139%2Fcjfas-2013-0654&crossref=10.1016%2Fj.jglr.2011.09.010&citationId=p_5_1
http://www.nrcresearchpress.com/action/showLinks?doi=10.1139%2Fcjfas-2013-0654&crossref=10.1111%2Fj.1529-8817.2011.01042.x&citationId=p_7_1
http://www.nrcresearchpress.com/action/showLinks?doi=10.1139%2Fcjfas-2013-0654&crossref=10.1016%2FS0304-3800%2802%2900205-3&citationId=p_2_1
http://www.nrcresearchpress.com/action/showLinks?doi=10.1139%2Fcjfas-2013-0654&crossref=10.1016%2Fj.chemolab.2005.05.004&citationId=p_6_1


Chaffin, J.D., Bridgeman, T.B., Heckathorn, S.A., and Mishra, S. 2011. Assessment
of Microcystis growth rate potential and nutrient status across a trophic gra-
dient in western Lake Erie. J. Gt. Lakes Res. 37(1): 92–100. doi:10.1016/j.jglr.
2010.11.016.

Chaffin, J.D., Bridgeman, T.B., and Bade, D.L. 2013. Nitrogen constrains the
growth of late summer cyanobacterial blooms in Lake Erie. Adv. Microbiol.
3(6A): 16–26. doi:10.4236/aim.2013.36A003.

Chandler, D.C. 1940. Limnological studies of western Lake Erie. 1. Plankton and
certain physical–chemical data of the Bass Islands region, from September,
1938 to November, 1939. Ohio J. Sci. 40(6): 291–336.

Chawla, N., Bowyer, K., Hall, L., and Kegelmeyer, W. 2002. SMOTE: synthetic
minority oversampling technique. J. Artific. Intell. Res. 16(January–June):
321–357.

Chorus, I., and Mur, L. 1999. Preventative measures. In Toxic cyanobacteria in
water: a guide to their public health consequences, monitoring and manage-
ment. Edited by L. Chorus and J. Bartram. E & FN Spon on behalf of the World
Health Organization, London, England. pp. 235–274.

Conroy, J.D., Edwards, W.J., Pontius, R.A., Kane, D.D., Zhang, H., Shea, J.F.,
Richey, J.N., and Culver, D.A. 2005. Soluble nitrogen and phosphorus excre-
tion of exotic freshwater mussels (Dreissena spp.): potential impacts for nu-
trient remineralisation in western Lake Erie. Freshw. Biol. 50(7): 1146–1162.
doi:10.1111/j.1365-2427.2005.01392.x.

Davis, T.W., Berry, D.L., Boyer, G.L., and Gobler, C.J. 2009. The effects of temper-
ature and nutrients on the growth and dynamics of toxic and non-toxic
strains of Microcystis during cyanobacteria blooms. Harmful Algae, 8(5):
715–725. doi:10.1016/j.hal.2009.02.004.

Davis, T.W., Harke, M.J., Marcoval, M.A., Goleski, J., Orano-Dawson, C.,
Berry, D.L., and Gobler, C.J. 2010. Effects of nitrogenous compounds and
phosphorus on the growth of toxic and non-toxic strains of Microcystis during
cyanobacterial blooms. Aquat. Microbiol. Ecol. 61(2): 149–162. doi:10.3354/
ame01445.

DeMarchi, C., Tao, W., Johengen, T.H., and Stow, C.A. 2010. Uncertainty in phos-
phorus load estimation from a large watershed in the Great Lakes basin. In
SimHydro 2010: hydraulic modeling and uncertainty. Sophia–Antipolis,
2–4 June. Hydraulic Engineering Company of France, International Associa-
tion of Hydraulic Research and Engineering. pp. 1–13.

De Stasio, B.T., Schrimpf, M.B., Beranek, A.E., and Daniels, W.C. 2008. Increased
chlorophyll a, phytoplankton abundance, and cyanobacteria occurrence fol-
lowing invasion of Green Bay, Lake Michigan by dreissenid mussels. Aquat.
Invasions, 3(1): 21–27. doi:10.3391/ai.2008.3.1.5.

Doak, D.F., Estes, J.A., Halpern, B.S., Jacob, U., Lindberg, D.R., Lovvorn, J.,
Monson, D.H., Tinker, M.T., Williams, T.M., Wootton, J.T., Carroll, I.,
Emmerson, M., Micheli, F., and Novak, M. 2008. Understanding and predict-
ing ecological dynamics: are major surprises inevitable? Ecology, 89(4): 952–
961. doi:10.1890/07-0965.1. PMID:18481520.

Dolan, D.M., and Chapra, S.C. 2012. Great Lakes total phosphorus revisited: 1.
Loading analysis and update (1994–2008). J. Gt. Lakes Res. 38(4): 730–740.
doi:10.1016/j.jglr.2012.10.001.

Downing, J.A., Watson, S.B., and McCauley, E. 2001. Predicting Cyanobacteria
dominance in lakes. Can. J. Fish. Aquat. Sci. 58(10): 1905–1908. doi:10.1139/f01-
143.

Dyble, J., Fahnenstiel, G.L., Litaker, R.W., Millie, D.F., and Tester, P.A. 2008.
Microcystin concentrations and genetic diversity of Microcystis in the lower
Great Lakes. Environ. Toxicol. 23(4): 507–516. doi:10.1002/tox.20370. PMID:
18247416.

Elith, J., and Leathwick, J.R. 2009. Species distribution models: ecological expla-
nation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40:
677–697. doi:10.1146/annurev.ecolsys.110308.120159.

Environment Canada and US Environmental Protection Agency. 2003. Imple-
menting Indicators 2003 — A Technical Report. Environment Canada,
Downsview, Ont.

Fahnenstiel, G.L., Krause, A.E., McCormick, M.J., Carrick, H.J., and Schelske, C.L.
1998. The structure of the planktonic food-web in the St. Lawrence Great
Lakes. J. Gt. Lakes Res. 24(3): 531–554. doi:10.1016/S0380-1330(98)70843-3.

Gevrey, M., Dimopoulos, I., and Lek, S. 2003. Review and comparison of methods
to study the contribution of variables in artificial neural network models.
Ecol. Modell. 160(3): 249–264. doi:10.1016/S0304-3800(02)00257-0.

Gevrey, M., Dimopoulos, I., and Lek, S. 2006. Two-way interaction of input vari-
ables in the sensitivity analysis of neural network models. Ecol. Modell.
195(1–2): 43–50. doi:10.1016/j.ecolmodel.2005.11.008.

Gonzalez, S. 2000. Neural networks for macroeconomic forecasting: a compli-
mentary approach to linear regression models. Canadian Department of
Finance Working Paper No. 2000-07, Ottawa, Ont., Canada.

Great Lakes Commission. 2012. Priorities for reducing phosphorus loadings and
abating algal blooms in the Great Lakes-St. Lawrence River basin: opportuni-
ties and challenges for improving Great Lakes aquatic ecosystems. Phospho-
rus Reduction Task Force Technical Report, Great Lakes Commission, Ann
Arbor, Mich.

Groffman, P.M., Baron, J.S., Blett, T., Gold, A.J., Goodman, I., Gunderson, L.H.,
Levinson, B.M., Palmer, M.A., Paerl, H.W., Peterson, G.D., Poff, N.L.,
Rejeski, D.W., Reynolds, J.F., Turner, M.G., Weathers, K.C., and Wiens, J. 2006.
Ecological thresholds: the key to successful environmental management or
an important concept with no practical application? Ecosystems, 9(1): 1–13.
doi:10.1007/s10021-003-0142-z.

Guisan, A., and Thuiller, W. 2005. Predicting species distribution: offering more
than simple habitat models. Ecol. Lett. 8(9): 993–1009. doi:10.1111/j.1461-0248.
2005.00792.x.

Håkanson, L. 2000. The role of characteristic coefficients of variation in uncer-
tainty and sensitivity analyses, with examples related to the structuring of
lake eutrophication models. Ecol. Modell. 131(1): 1–20. doi:10.1016/S0304-
3800(00)00219-2.

Hartman, W. 1973. Effects of exploitation, environmental changes, and new
species on the fish habitats and resources of Lake Erie. Great Lakes Fish
Commission, Tech. Rep. 22, Ann Arbor, Mich.

Heffernan, J.B., Liebowitz, D.M., Frazer, T.K., Evans, J.M., and Cohen, M.J. 2010.
Algal blooms and the nitrogen-enrichment hypothesis in Florida springs:
evidence, alternatives, and adaptive management. Ecol. Appl. 20(3): 816–829.
doi:10.1890/08-1362.1. PMID:20437966.

International Joint Commission. 2014. A balanced diet for Lake Erie: reducing
phosphorus loadings and harmful algal blooms. Report of the Lake Erie
Ecosystem Priority, Washington, D.C., and Ottawa, Ont.

Jørgensen, S.E., Chon, T.-S., and Recknagel, F.A. (Editors). 2009. Handbook of
ecological modelling and informatics. WIT Press, Southhampton, UK.

Michalak, A.M., Anderson, E.J., Beletsky, D., Boland, S., Bosch, N.S.,
Bridgeman, T.B., Chaffin, J.D., Cho, K., Confesor, R., Daloğlu, I., DePinto, J.V.,
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