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Cellular automata (CA) and artificial neural networks (ANNs) have been used by
researchers over the last three decades to simulate land-use change (LUC). While
conventional CA and ANN models assign a cell to only one land-use class, in reality, a
cell may belong to several land-use classes simultaneously. The recently developed
multi-label (ML) concept overcomes this limitation in land change science. Although
theML concept is a new paradigmwith nonexclusive classes and has shown considerable
merit in several applications, few studies in land change science have applied it. In
addition, determining transition rules in conventional CA is difficult when the number of
drivers is large. Since CA has been shown as a potential model to consider neighborhood
effects and ANN has been shown effective in determining CA transition rules, we
integrated both CA with an ANN model to overcome limitations of each tool. In this
study, we specifically extended the ANN-based Land Transformation Model (LTM) with
both a CA-based model and the ML concept to create an integrated ML-CA-LTM
modeling framework. We also compared, using standard evaluation measures, differ-
ences between the proposed integrated model with a conventional CA-based LTMmodel
(called the ml-CA-LTM). Parameterization was made using a learning and testing
procedure common in machine learning. Results showed that the modified LUC
model, ML-CA-LTM, produced consistently better goodness of fit calibration values
compared to the ml-CA-LTM. The outcome of this modified model can be used by
managers and decision makers for improved urban planning.

Keywords: artificial neural networks; cellular automata; land-use change; mono-label
class; multi-label classes

Introduction

Land change is known for being a complex process across spatial and temporal scales
(Brown et al. 2013). Land change scholars usually combine various endogenous factors
(e.g., neighborhood effect and interaction among factors as well as land-use classes) and
exogenous factors (e.g., slope and transport systems, human behavior, socioeconomic and
cultural factors) across multiple scales (Lambin and Geist 2006) to explain this complexity.
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Scientists from various disciplines such as computer science, geography, cartography, and
environmental engineering, have contributed to land change science (cf. Turner, Lambin,
and Reenberg 2007; Mustard et al. 2004; Rindfuss et al. 2004; Lambin et al. 2001; Azari
et al. 2016). Machine learning techniques (Witten and Frank 2005), due to their ability to
fit nonlinear functions, have been used to learn about land-use change (LUC) patterns (e.g.,
Pijanowski et al. 2002a, 2006). Machine learning techniques include various approaches
such as artificial neural networks (ANNs) (Li and Yeh 2002; Basse et al. 2014), support
vector machines (Yang, Li, and Shi 2008; Huang, Xie, and Tay 2010), genetic algorithms
(Shan, Alkheder, and Wang 2008), classification and regression trees (Tayyebi and
Pijanowski 2014), multivariate adaptive regression splines (Tayyebi et al. 2014b), among
others (Bagan and Yamagata 2015; Omrani et al. 2015a, 2015b).

The Land Transformation Model (LTM), which is an ANN-based model, is one of
the well-known machine learning tools that has been used and applied to various
places across the globe, including Asia (Pijanowski et al. 2009), Europe (Pijanowski,
Alexandridis, and Mueller 2006), Africa (Tayyebi et al. 2014b), and the United States
(Pijanowski et al. 2002b; Tayyebi et al. 2013; Pijanowski et al. 2014). After over a
decade of development and assessment, the LTM has been used to: (1) determine the
level of uncertainty in land change model output and land change contexts
(Pijanowski et al. 2014; Ray et al. 2012); (2) couple to other process-based models
to understand how LUC alters ecosystem dynamics (Pijanowski et al. 2007; Wayland
et al. 2003); and (3) be used as baseline data layer for online decision support tools
(Ray et al. 2012). The LTM has also been used in conjunction with participatory and
role playing games so that the complexity of LUC can be understood using a
combination of computer-based and human-based decision-making (e.g.,
Washington-Ottombre et al. 2010; Olson et al. 2008). Finally, the model has been
configured to run “backward” in order to create historical land-use maps (Pijanowski
et al. 2007) with the aim of understanding how legacies of land use affect current
ecosystem processes.

In previous studies, either the application of a single LUC (e.g., Pijanowski et al.
2002b) or multiple LUCs (Pijanowski et al. 2014) have yielded somewhat satisfactory
performing models using single-class assignments of spatial units. The original
version of the LTM (Pijanowski et al. 2002a) has been designed to simulate condi-
tions of change and persistence. Many of these parameterizations (e.g., Tayyebi,
Perry, and Tayyebi 2014a) performed relatively well during calibration steps. For
example, Tayyebi et al. (2014b) used the LTM to simulate urbanization, forest
growth, and agriculture gain as independent routines, comparing and contrasting
model performance in both the United States and East Africa. They found that ability
of the LTM to predict change for each class varied by land-use class, as well as
location. Yet, another configuration of the model, designed to simulate multiple LUCs
simultaneously (Pijanowski et al. 2014), was also shown to deal with more than two
land-use classes at a time. However, even the LTM, with multiple LUCs’ capabilities,
makes the assumption that each cell belongs only to one land-use class at each time.
Finally, the LTM, configured as a hybrid model, has been coupled with spatially
explicit models such as cellular automata (CA) to make calibration run (e.g., finding
the transition rules of CA model) faster (Li and Yeh 2002; Basse et al. 2014). For
example, Li and Yeh (2001) integrated CA with ANN to calibrate a CA-ANN model
to determine transition rules for urbanization and land-use management.
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With CA models, areas are presented by a grid of cells and interaction among these
cells defines the global behavior of land-use systems. According to literature (Clarke,
Hoppen, and Gaydos 1997; Couclelis 2005; Wolfram 1994, 2002; Akın, Clarke, and
Berberoglu 2014), CA can simulate complex LUC systems (in sensu Lambin et al. 2001).
In the early 1990s, the use of CA models became more common as a tool to study land-
use dynamics. In fact, CA models were accepted as one of the most well-known tools for
better understanding the hidden patterns in land-use data (White, Uljee, and Engelen
2012; Blecic, Cecchini, and Trunfio 2013). The interest in using CA for modeling LUCs
was triggered by the fact that CA models are spatially explicit, and have many common
characteristics with the land-use system.

The previous studies of LUC modeling (e.g., both ANN and CA) were limited
with using the multi-label (ML) concept. Thus, it is required to develop a LUC model
that can simulate mixed land-use classes. Omrani et al. (2015a) have recently showed
the merit of the ML concept in LUC modeling. These researchers utilized the ML
k-nearest neighbors (MLkNN) technique, but did so outside the CA framework. The
current paper takes the next step by introducing the new concept of ML into an
integrated CA–LTM model. ML is important to LUC modeling in several ways. First,
many places have mixed land uses and this needs to be represented in models. For
example, farm fields may also be used as wind farms and places for grazing of
animals during pasture rotations. Second, in areas where there is a lot of land-use
fragmentation, some pixels are not large enough to represent one homogenous patch
of a land use; they might have more than one. This is especially true for areas along
the urban–rural fringe where complex shorelines create boundaries of land and water
where high spatial detail is needed. Third, many “snapshots” of land use/cover across
large areas contain locations in transition. Former forest or agricultural lands could be
bare soil in a satellite image or aerial photo as land is being prepared for develop-
ment. These cells could be considered a hybrid use at that moment in time. Finally,
assigning multiple tags to a cell means that more information can be associated with
a location, such as levels of “intensity.”

The ML classification is different from the mono-label (ml) classification approach
(Figure 1(a)–(b)). An ML cell can have more than one class at the same time. However,
an ml cell can only have one elementary class (i.e., single label). Moreover, the ML

Figure 1. (a) mono-label classification (ml) with two land-use classes (gray and black) and (b)
Multi-Label classification (ML) with cells belonging to both classes (squares split by the two
colors).
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classification is different from fuzzy logic (Boutell et al. 2004). Fuzzy logic addresses the
ambiguity in the border of multiple land-use classes (e.g., 0.2 for forest, 0.3 for
agriculture, and 0.5 for urban; Malczewski 2006). Fuzzy logic employs a nondiscrete
membership function to characterize ambiguity and uses defuzzification to derive a crisp
land-use class (Power, Simms, and White 2001). In contrast, ML classification is able to
assign multiple land uses to one cell (Sorower 2010). The content for different land-use
classes is distinct (e.g., urban, agriculture, and forest). In addition, the sum of fuzzy
functions usually is normalized to 1, while no such constraints apply to the ML
classification.

Most of the previous applications of LTM (binary and multi-class) as well as CA
models correspond to a ml land-use concept. This sort of LUC modeling is not
realistic due to the fact that one cell in reality might belong to multiple land-use
classes. According to White, Uljee, and Engelen (2012), most LUC models have a
major drawback which is the discrete state assignment for cells – a cell has a one
state at a time – which is unrealistic for areas with mixed land uses. Though there is
progress in LUC modeling, the elaboration of an appropriate LUC model that can
simulate mixed LUCs is challenging (Couclelis 2005; Batty 2011). To overcome the
existing gap in literature, a potential solution is the concept of ML instead of ml. In
this study, we integrated the LTM with CA and the ML concept to simulated mixed
LUCs (called the ML-CA-LTM). An ANN algorithm with the Backpropagation
Multi-Label Learning (BP-MLL) is used to determine CA transition rules (Zhang
and Zhou 2006).

We applied the developed model on rich datasets from the country of
Luxembourg, Europe, to study mixed LUCs. We validated the model using the
common goodness-of-fit measurements for ML learning including accuracy, preci-
sion, and an F-measure. We also compared the proposed model with the conventional
LTM model (called hereafter the ml-CA-LTM), based on a set of measures carefully
selected to demonstrate the added value of the new model. ML-CA-LTM offers to the
wider community of researchers working on land-use modeling, a new research
framework that addresses the current shortcomings of the conventional LTM and
CA models when dealing with mixed land use (i.e., ML class).

Methods and materials

Multi-label cellular automata-Land Transformation Model: ML-CA-LTM

The new model has three integrated components (ML, CA, and LTM). Figure 2 shows
the entire process of integrating the ML land-use concept and CA with the ANN-based
LTM (ML-CA-LTM).

(1) ML: The preprocessing consists of converting the vector map to raster using a
soft classification procedure that lets a cell have more than one land-use class. As a
result, a cell may be associated with several labels (see Figure 3), for instance, when it is
on the border of residential and industrial areas. The procedure of soft classification/
rasterization is different than the hard classification (using a dominant class) which is
extensively applied in LUC science.

(2) CA: The new model has all the characteristics of a CA model but with a new
extension mainly related to a cell’s state and its transition rule: (a) Cell: It has a regular
rectangular form with 1 ha resolution. In general, the shape of cells in CA can be regular
or irregular; (b) Time: The status of each cell varies across time steps; (c) Extent: It
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corresponds to the entire study area; (d) State: Each cell has a unique state at each time
from a finite set of states. Each cell may have several states (classes/labels) at the same
time; (e) Neighborhood: It defines the interaction among cells. The neighborhood rela-
tion is local and uniform (e.g., Moore neighborhood). The number of cells in this
neighborhood and correspondence to each class is computed and considered as an
input variable in the model; and (f) Transition rule: It determines the future state of
each cell using a set of explanatory variables, the current state of the cell, and the states
of the cells in the local neighborhood.

(3) LTM: LTM, which is an ANN-based LUC model, uses geographic information
system (GIS) layers to simulate LUCs (Pijanowski et al. 2014). ANNs build a functional
relationship by passing information from inputs through a network of nodes that have
activation and bias function coefficients that approximate the pattern of the LUCs coded
as outputs; as such, the simulation mimics the behavior of neurons and learning by a
vertebrate brain (Reed and Marks 1998; Li and Yeh 2002; Grekousis, Manetos, and
Photis 2013; Mas et al. 2004; Basse et al. 2014).

For integrating the ML concept with LTM, the Backpropagation algorithm for ML
learning (BP-MLL) has been used (Zhang and Zhou 2006). The BP-MLL employs a

Figure 2. Conceptual diagram of the ML-CA-LTM model.

Figure 3. Conversion of a vector map to a raster map with ML: (a) vector data containing
polygons with land-use codes; (b) rasterizing vector data; (c) the value of each grid in raster space
depends on the land-use code of the polygons which cover them.
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multilayer perceptron with three consequent layers called input, hidden, and output
layers to learn the spatial and temporal LUC patterns (Figure 4). The hidden layer in
BP-MLL is able to detect nonlinear patterns in land-use data (Heaton 2005). To
address the dependence among labels/classes in BP-MLL, the error function is
modified to better understand the spatial and temporal patterns of ML learning. The
minimization of the error function is performed using a gradient descent technique
called mean square error (Zhang and Zhou 2006). The number of nodes in the hidden
layer is important because it impacts the model’s performance (Pijanowski et al.
2014). Pijanowski et al. (2002a) built an ANN where the number of hidden nodes
was equal to the number of input nodes. In the current paper, the number of hidden
nodes is fixed by adjusting the error rate for several numbers of hidden nodes and the
optimal number corresponds to the minimum value of the error rate, as stated by
Omrani et al. (2013).

ML-CA-LTM versus ML-CA-LTM

There are generally two ways to apply an ML classification (Yang et al. 2012): (1)
transformation and (2) adaptation. The transformation methods consist of converting
the ML classification task to a series of binary tasks which then applies an ml
classifier to each one (case of the ml-CA-LTM). However, the adaptation methods
handle the ML data without any transformation and then apply an ML classifier (case
of the ML-CA-LTM).

The ml-CA-LTM and ML-CA-LTM use ANN to calibrate the CA-based land-use
model. The ml-CA-LTM and ML-CA-LTM models use ANN with BP (Backpropagation
for ml learning approach with one output label at a time) and BP-MLL (Backpropagation
adapted for ML learning with four output labels simultaneously), respectively (see
Figure 4; Tayyebi and Pijanowski 2014). The BP algorithm uses the mean square error
and the BP-MLL uses a modified error function to address the dependence among labels
(Zhang and Zhou 2006).

Figure 4. Architectures of the neural network BP-MLL (in the left) and BP (in the right) showing
input, hidden and output layers.
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We present, hereafter, the main processing steps of the BP-MLL neural network
algorithm used in the ML-CA-LTM model (Figure 5). These steps can very well be
applied to the ml-CA-LTM as well. However, the BP-MLL learning algorithm
simulates complexity that BP cannot. These steps include: (1) Assigning random
weights; (2) For a given set of inputs, a set of known outputs or observed outputs are
assigned (using a binary coding, e.g., the ML class (1,1,1,0) indicates that the first
three elementary labels are present in the cell); (3) The network then calculates the
outputs using the assigned random weights; (4) The ANN then compares the outputs
that the network calculated (estimated outputs) with the observed outputs; (5) The
difference between estimated and observed outputs is calculated using an error
function; (6) The ANN then updates the weights using the BP-MLL algorithm to
minimize the error; and (7) Once the weights are updated, the neural networks
calculate the estimated outputs from the obtained set of probabilities using an optimal
threshold. The repetitive learning process usually ends when the model reaches an
acceptable error rate or maximum number of iterations set by the user.

Model calibration and evaluation

The stratified random sampling approach was used to divide the entire data into
learning and testing subsets within each land-use class (stratum). We fit the model to
the learning set and assessed the evaluation measures (metrics) to the testing set. We
replicated this process of partitioning, fitting the model, and evaluating the metrics N
times, obtaining N sets of the metrics. Their average is the overall evaluation
measure. We use this method throughout the set of simulations. Using spatial data
in t1, we generate a set of variables that we assume can explain ML LUCs as model
inputs. The model output is mixed LUCs between t1 and t2. Based on the training

Figure 5. Processing steps of the ML-CA-LTM model. Note that the estimated label set for a given
cell is fixed by a threshold which is to be optimized, as suggested by Zhang and Zhou (2006).
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dataset, the learning algorithm (i.e., BP-MLL) can capture the pattern of the land use
at t2 as a function of the variables set extracted at period t1. As a result, it will be
possible to simulate the land use at t3 based upon the detected pattern from the
training run. The ML-CA-LTM method has two parameters, the number of neighbors
used in the neighborhood configuration, k, and the number of units in the hidden
layers, h.

Evaluation of the ML learning algorithm is more challenging than ml learning as
the prediction for a cell obtained by ML may be correct either completely to some
extent or certainly not at all (see Boutell et al. (2004) for more details). Yi is the set
of the actual labels of a spatial unit (cell xi) and Ŷi = C(xi) is the set of estimated
labels for cell xi. Our metrics depend on the following four counts: Ai = |Yi∩Ŷi|, the
number of labels that the actual and estimated classifications have in common; Bi = |
YiUŶi|, the number of labels that appear in at least one of the two classifications;
Ci = |Ŷi|, and Di = |Yi|, the numbers of labels in the actual and estimated classifica-
tions. The metrics called accuracy (Acc), precision (Prec), recall (Rec), and F1 are
defined as:

Acc ¼ 1
m

Pm

i¼1

Ai
Bi

Pr ec ¼ 1
m

Pm

i¼1

Ai
Ci

Rec ¼ 1
m

Pm

i¼1

Ai
Di

F1 ¼ 2 Pr ec:Rec
Pr ecþRec ¼ 1

m

Pm

i¼1

2Ai
CiþDi

;

(1)

where m is the number of cells used in the testing run. F1 is the harmonic average of
Prec and Rec (Omrani et al. 2015a). Like Acc, it is a symmetric function of the actual and
estimated labels.

The Hamming loss (Hamm.loss) is the symmetric difference between observed and
estimated labels, Yi and Ŷi. This metric counts the errors of two kinds, incorrect inclusion
and incorrect omission of a label. It is defined as:

Hamm: loss ¼ 1

m

Xm

i¼1

1

Q
ΔðYi; ŶiÞj;
�� (2)

where Δ shows the symmetric difference between Yi and Ŷi, while Q shows the number
of labels.

All five metrics are averages of fractions, and their value ranges vary between 0 and
1. Larger values of Acc, Prec, Rec, and F1 correspond to better performance, while
smaller values for Hamming loss correspond to better performance.

We illustrate hereafter the evaluation measures (i.e., metrics). We use a testing set
with five cells that belong to label set Y = {l1, l2, l3, l4}. Every cell can have one or
several labels (observed outputs). In Table 1, we give the estimated outcomes for the
given cells to show how to compute the evaluation measures.

We illustrate here how the various metrics are computed, according to the definition
of each metric described above:
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Acc ¼ 1=5 1=3þ 2=2þ 2=2þ 1=2þ 1=2ð Þ ¼ 0:66;

Prec ¼ 1=5 1=2þ 2=2þ 2=2þ 1=2þ 1=1ð Þ ¼ 0:8;

Rec ¼ 1=5 1=2þ 2=2þ 2=2þ 1=1þ 1=2ð Þ ¼ 0:8;

F1 ¼ 1=5 2:1= 2þ 2ð Þ þ 2:2 2þ 2ð Þ þ 2:2= 2þ 2ð Þ þ 2:1= 1þ 2ð Þ þ 2:1= 2þ 1ð Þð Þ
¼ 0:76;

Hamm:loss ¼ 1=5 2þ 0þ 0þ 1þ 1ð Þ ¼ 4=5 ¼ 0:8

(3)

All the presented measures (i.e., accuracy, precision, recall, hamming loss) are
applied in the application section.

Implementation of ML-CA-LTM

Study area

Luxembourg has attracted a lot of immigrants across entire Europe due to the socioeconomic
development of its citizens. This is also due to the industrial sectors that have had a
significant impact on the economic and financial status of the country, which has been
ongoing since the 1970s. Despite its specific spatial constraint in term of surfaces (2586 km2)
and population (512,353 inhabitants), this “small country” benefits from the strategic central
geographic location within the European Union (Figure 6). Surrounded by Germany, France,
and Belgium, Luxembourg attracts a variety of qualified workers with a broad array of skills
to sustain its economic vitality, resulting in high-end residential communities with consider-
able daily mobility within Luxembourg and across border land territories.

Land-use data

We used the biophysical land-use data as land-cover data source. There are two
vector maps that represent land cover for the years 1999 and 2007 (Maps 1999,
2007). Every vector map comprises 76 land-cover classes within 6 main categories,
namely: artificial, agriculture, wetlands, forest, water, and seminatural areas. In the
current study, we reclassified the 76 into 4 land-cover classes: urban, industry,
agriculture, and forest and did not allow changes to water and wetlands and so
were not considered in our modeling framework. The reclassification was achieved

Table 1. Example of a testing set.

Observed Observed Class Neural output Estimated class Estimated

Label set y1 y2 y3 y4 y1 y2 y3 y4 y1 y2 y3 y4 Label set

{y1, y4} 1 0 0 1 0.5 0.1 0.6 0.2 1 0 1 0 {y1, y3}
{y2, y3} 0 1 1 0 0.3 0.7 0.4 0.1 0 1 1 0 {y2, y3}
{y1, y4} 1 0 0 1 0.5 0.2 0.2 0.6 1 0 0 1 {y1, y4}
{y2} 0 1 0 0 0.2 0.8 0.1 0.6 0 1 0 1 {y2, y4}
{y1, y3} 1 0 1 0 0.9 0.3 0.2 0.1 1 0 0 0 {y1}

Note: The selected outputs, based on an optimized threshold = 0.45, are shown in bold.
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with the help of local experts experienced with the biophysical dataset. Descriptions
for each land-use class are:

● Urban: a variety of urban land uses, from compact urban areas to rural areas, parks,
and car parking areas;

● Industrial: commercial, military, and industrial areas;
● Agricultural: all types of agricultural land, including orchards and grazing land;
● Forestry: forested land, including areas covered by shrubs, bushes, forests, and

rocky areas;

In the dataset, we have the following elementary labels (i.e., classes of land use): urban,
industrial, agriculture, and forest. We define a ML classification for each cell in a given
year, by an element of the set {0,1}4, indicating for each elementary label (called ml)
whether it is present in the cell or not. For example, the ML class (1,1,1,1) indicates that
all four elementary labels are present in the cell. We construct the dataset with ML
classes and use it for classifying land use in Luxembourg (Omrani et al. 2015a). In a
vector map, features are represented by points, lines, and polygons. In the current
application, we rasterize the vector map of Luxembourg (i.e., convert the vector infor-
mation into a raster format) using a rectangle grid with a resolution of 100 m (cell size of
1 ha). This resolution is commonly used at a regional or national scale (White and
Engelen 2000). Such resolution is appropriate to capture variability that can be partly lost
at finer resolutions (Hijmans et al. 2005). We implemented the ML data preparation
algorithm using GIS software and the Python programming language (see Omrani et al.
2015a for more details).

Figure 6. Luxembourg and its bordering areas.
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Data processing for inputs and outputs

The input data are coming from various data sources including aerial photographs at
two time periods 1999 and 2007, and a digital elevation model (derived from SRTM
data) to illustrate the physical constraint of the studied area. The slope was derived
from the digital elevation model database (Farr et al. 2007). The explanatory vari-
ables used in this study are: the state of each cell, distance to transport system (bus
stations, train stations, road, and access to highway), distance to Luxembourg border
area, slope, and number of each land-use class in the Moore neighborhood (Table 2).
The time step was set to 8 years (due to observed time periods), which means that
each iteration represents 8 years of change in the real world. Table 3 shows the land-
use statistics between two time periods (1999 and 2007). Figure 7 illustrates the LUC
and their spatial locations between 1999 and 2007.

Results

Training run

We used cross-validation with 100 replications to explore the (integer) values of the
parameters k and h. From trial experiments, we concluded that the optimal results

Table 2. Driving features as input of the model.

Category Variable Description

Physical State_cell Y = (y1,y2,y3,y4) Multi-label class
X1: Slope Slope value of cell (%)
X2: Urban_neighbours Amount of urban cells in the 3 × 3

Moore neighborhood
X3: Industrial_neighbours Amount of industrial cells in the 3 × 3 Moore

neighborhood
X4: Agriculture_neighbours Amount of agriculture cells in the 3 × 3 Moore

neighborhood
X5: Forest_neighbours Amount of forest cells in the 3 × 3

Moore neighborhood
X6: Water_neighbours Amount of water cells in the 3 × 3

Moore neighborhood
City/country

distances
X7: Distance_border Distance from cell to the border of Luxembourg

country (m)
X8: Distance_main_city1 Distance from cell to the city of Luxembourg (m)
X9: Distance_ main_city2 Distance from cell to the city of Esch (m)
X10: Distance_ main_city3 Distance from cell to the city of Differdange (m)

Transportation X11: Transport_neighbours Amount of transport cells in the 3 × 3 Moore
neighborhood

X12: Distance_bus_stations Distance from cell to the closest bus station (m)
X13:

Distance_train_stations
Distance from cell to the closest train station (m)

X14: Distance_highway Distance from cell to the nearest highway access
point (m)

X15: Number_bus_station Number of bus stations located 2 km away from
cell

X16: Number_train_station Number of train stations located 2 km away from
cell
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were obtained for values of k = 3 and h = 12, based on the average of accuracy,
precision, recall, F1, and Hamming loss. All the results reported below relate to k = 3
and h = 12. Figure 8 shows a typology of ML-CA-LTM model with an input layer
(with 16 inputs), one hidden layer (with 12 hidden units), and an output layer (with 4
outcomes).

Accuracy assessment

The accuracy assessment of the proposed model (Table 4) showed satisfactory results. In
fact, the high accuracy, precision, recall, and F1 show that the model managed to capture
the LUC patterns remarkably well and to adequately mimic the LUC function. The
predicted land use for Luxembourg area in 2007 (Figure 9) is very similar to the real
situation (i.e., reference land-use map in 2007) where the average of accuracy is
0.691 ± 0.021 (Table 4). This result clearly demonstrates the ability of the ML-CA-
LTM model to capture the LUC patterns. Figure 10 shows an error map (Hamming loss),
which is built from comparing observed and predicted maps in Figure 9. The error map
or Hamming loss shows the difference between observed and predicted labels. According
to the results, the overall Hamming loss is also low 0.131 ± 0.006 (Table 4).

Figures 9 and 10 show that the new model could successfully predict the urban
development and learned the changes to urban patterns. In fact, for decades, the majority
of urban development took place in the central (city of Luxembourg) and southern (in
specific southwest) parts of the outlining areas of Luxembourg. Moreover, the model
proposed changes to urban areas that are characterized by low slope and were located
near transport facilities. This is also in line with the observed changes (Figure 9).

A more detailed summary of the predictions is obtained by the confusion matrix for
ML classification as shown in Figure 11. The rows and columns of this matrix are the
ML (F, A, AF . . . AFIU) and its entries are the percentages of cells.

Table 3. Multi-label land-use data in 2007.

Observed label set

Class 1999 2007

Label set U I A F # % # %

F 0 0 0 1 56,730 22.19 57,297 22.41
A 0 0 1 0 75,320 29.46 73,025 28.56
AF 0 0 1 1 77,330 30.24 76,777 30.03
I 0 1 0 0 1305 0.51 1282 0.50
FI 0 1 0 1 1961 0.77 2141 0.84
AI 0 1 1 0 2558 1.00 3001 1.17
AFI 0 1 1 1 2277 0.89 2609 1.02
U 1 0 0 0 3933 1.54 3796 1.48
FU 1 0 0 1 3583 1.40 3862 1.51
AU 1 0 1 0 17,024 6.66 15,565 6.09
AUF 1 0 1 1 9342 3.65 9375 3.67
IU 1 1 0 0 973 0.38 1426 0.56
FIU 1 1 0 1 795 0.31 1046 0.41
AIU 1 1 1 0 1517 0.59 2943 1.15
AFIU 1 1 1 1 892 0.35 1399 0.55
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The label sets (A, AF, I, FI, AI) and (U, FU), (AUF, IU, FIU, AIU, AFIU) have been
well predicted; however the label sets F, AI-AFI and AU have not been very well
predicted as a result of complexity in the label set structure of land-use classes. For
example, from Figure 11 we can easily see that the observed label set F (forest) is
predicted mainly as label set F (forest) and label set FU (forest and urban). For the
observed label set FI (forest and industrial), the ML-CA-LTM performed quite well. A
big part of cells are correctly predicted as label set FI (forest and industrial) and few cells
are classified as label set I (industrial), and label set FIU (forest, industrial, and urban).
The label set AFI (agriculture, forest, and industrial) and AU (agriculture and urban) have
been classified to (FI, AFI) and (AU, U), respectively. This is probably due to the high
dependency/correlation among the label sets (e.g., AFI and FI). Indeed, the ML sets are
more likely to be converted into other label sets.

As shown in Figure 11 and Table 5, the predicted and observed change matrices show
that changes in land use occur more frequently in cells with more mixed land uses (i.e.,
containing more than one land-use class) than in cells with less mixed land uses. In fact,

A−AF
A−IA
A−UA

U−UI

newU
newI

Ulost
Ilost

Figure 7. Changes location between 1999 and 2007.
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the more mixed the land use in a cell, the higher the probability that changes will occur in
the land uses in the cell. For instance, cells containing two different land-use classes are
more likely to change their states than cells containing only one land-use class. This is
because cells associated with more than one land use (i.e., cells with mixed land uses) are
located on the borders of the land uses. Expansion in a class of land use tends to start at
the border area, so cells containing mixed land uses are generally the first to change state.

The ML-CA-LTM model managed to learn the interactions between different label
sets, and this can be seen by comparing the two change matrices (Figure 11). For
instance, cells containing urban and forestry or agricultural land uses are likely to gain
industrial land uses when they change states. This is due to the fact that forestry and
agricultural areas can easily be converted into areas of commerce and light industry.
However, cells with urban, industrial, and agricultural or forestry areas (rows 14 and 1 in

Figure 8. Architecture of the ML-CA-LTM model (drivers X1 − X16 are explained in Table 2;
cell states are agriculture (1), forest (2), industrial (3) and urban (4)).

Table 4. Assessing the performance of the ML-CA-LTM model.

Accuracy Precision Recall F1 Hamming loss

0.691 ± 0.021 0. 799 ± 0.009 0.728 ± 0.012 0.843 ± 0.006 0.131 ± 0.006

296 H. Omrani et al.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
M

ic
hi

ga
n]

 a
t 1

3:
16

 1
3 

Se
pt

em
be

r 
20

17
 



the change matrices) were found to lose their industrial uses, which means that old
industrial plants are being abandoned. This might match reality because the economy of
Luxembourg has changed from a reliance on steel and heavy industries to a reliance on
the service sector (especially banking) in the last two decades. The predicted and
observed changes both showed that agricultural land use is slowly losing out in favor
of urban and forestry land uses. Further investigations are required to determine the
influence of the presence of one class of land use on the development of another, and this
can be achieved by performing a detailed assessment of the predicted and observed
change matrices.

Model comparison

The comparison was made by using the procedure of learning and testing common in
machine learning. We measured the performance of the proposed new model (ML-CA-
LTM) and the standard LTM model, using standard evaluation measures adapted to ML
learning. The model development was implemented in the computational language
Matlab. The two methods, ML-CA-LTM and ml-CA-LTM that use two different
approaches (i.e., ML and ml learning), were compared using common evaluation metrics,
particularly the overall prediction accuracy, precision, recall and the F1-measure
(Table 6). Based on the results shown in Table 6, the ML-CA-LTM model outperformed
the ml-CA-LTM in all of the evaluation measures. The new model, based on BP-MLL,
gave an accuracy (i.e., percentage of correctly classified instances) of 69.1%, whereas the
ml-CA-LTM model gave a lower accuracy of 39.7%. The proposed model was also better
at predicting all the land-use classes (see Table 6). In particular, the proposed ML-CA-
LTM model predicted urban, industrial, agricultural, and forestland uses much more
effectively than the ml-CA-LTM (conventional version of the LTM model with ML
data), as can be seen from the accuracy, precision, and recall evaluation measures.

Figure 9. Observed versus predicted land use in 2007.
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Discussion

This paper presents an original modeling framework that permits ML class assignment in
land use using LTM land use models and CA. The BP-MLL was used to identify the CA
transition rules. It has been shown in several applications that an ML modeling frame-
work has potential gain over ml learning (Yang et al. 2012). In land change science, we
showed that the ML models are more efficient than ml models since additional informa-
tion regarding the labels present in a cell is exploited (prior information about label
dependence). The concept of ML can be incorporated in other well-known land change
models as well (e.g., SLEUTH, CLUE, GEOMOD, Geo-Simulation, and others).

Another important point to discuss is the generation of ML land-use data. In this
paper, we converted vector maps to raster images using a soft classification allowing a
cell to have more than one land-use class. As a result, a cell may be associated with
several labels, for instance, when it is on the border of residential and industrial areas,
although a piece of land may have genuinely mixed-use. There are other ways according
to the needs and the purpose of the application. For instance, we mention hereafter two
possible and easy ways, among others, to build ML data in land-use science. First, we

Figure 10. Map of hamming loss.
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can create ML land-use data from raster grids (SPOT images) with high resolution (e.g.,
10 or 20 m) and then aggregate it at a coarser scale (e.g., 100 m). The later resolution is
suitable to detect variability that can be partially diminished at finer resolutions (White
and Engelen 2000). Second, it is also possible to assign two different categorical
variables to each cell as an ML outcome. For example, a cell can be classified as
“urban” or “non-urban” and in the same time as “low density of population,” “high
density of population,” or “no population.” This structure of categorical variables, as
proposed by White, Uljee, and Engelen (2012) using an activity-based model, is different
from our proposal. The current work applied the concept of ML class assignment in land
change science which is different from modeling multiple LUCs (Tayyebi and
Pijanowski 2014). The current model can handle ML data and predict ML land-use
status (Omrani et al. 2015a).

Figure 11. Confusion matrix with multi-labeling, observed versus predicted label set in 2007
(Note: normalized values between 0 and 100: each value in the original confusion matrix is divided
by the sum of its corresponding line and multiplied by 100).

Table 5. Confusion matrix with mono-labeling, observed vs. predicted label set in 2007.

Predicted label set in 2007

U I A F

Observed U 741 69 354 100
I 327 572 455 134
A 132 87 296 436
F 224 164 747 519
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The current paper limited the land-use characteristics to few drivers such as slope,
neighbors, and distance from highway and networks (bus and train stations) due to the
data limitation access in Luxembourg. These factors were used extensively by many
researchers to explain the LUC processes (e.g., Pijanowski et al. 2014; De Almeida et al.
2003; Verburg et al. 2002; Basse et al., 2014). Adding more demographic, economic,
planning, and policy factors may improve the performance of the ML-CA-LTM model.
These variables (e.g., population, jobs, housing prices, mobility flow, and accessibility)
are often defined at a macro scale (e.g., municipality) and will need to be disaggregated
down to a microlevel (i.e., cell level). Moreover, the proposed model did not integrate the
proportion of each land-use class. Therefore, the ML-CA-LTM can be extended in the
future to take into account these issues. The proposed modeling framework will open
diverse perspectives of research on both theoretical and empirical sides (such as model-
ing and evaluation issues, big data and cloud computing, and data analytics) having
exciting challenges as given in the next section.

Conclusion

In this study, we suggested a new algorithm for modeling mixed LUCs. ML-CA-LTM
presents the spatial unit in an intuitive way as it allows them to have more than one land-
use class at the same time. It also allows the modeling of interaction among different
combinations of land-use classes. ML-CA-LTM derives the functional relationships
between mixed LUC and a set of explanatory variables. The BP-MLL was used to
identify the transition rules of CA. We validated the integrated model using the popular
evaluation measures, accuracy, precision, recall and F1-measure, adapted to ML learn-
ing for a case study in Luxembourg. The ML-CA-LTM had promising results and
managed to mimic the LUCs complexity well. As a summary, we reached the following
conclusions for Luxembourg and similar locations undergoing LUC:

Table 6. Calculated accuracy metrics for ML-CA-LTM and ml-CA-LTM models (k = 3 and
h = 12); based on 100 replications.

ML-CA-LTM ml-CA-LTM

Accuracy 0. 691 ± 0.021 0.397 ± 0.009
Precision 0. 799 ± 0.009 0.464 ± 0.009
Recall 0.728 ± 0.012 0.397 ± 0.009
F1 0.843 ± 0.006 0.414 ± 0.009
Accuracy [U] 0.885 ± 0.015 0.586 ± 0.009
Accuracy [I] 0.827 ± 0.016 0.384 ± 0.009
Accuracy [A] 0.917 ± 0.012 0.311 ± 0.009
Accuracy [F] 0.850 ± 0.011 0.314 ± 0.009
Precision [U] 0.578 ± 0.047 0.520 ± 0.009
Precision [I] 0.496 ± 0.053 0.641 ± 0.009
Precision [A] 0.935 ± 0.018 0.160 ± 0.009
Precision [F] 0.870 ± 0.020 0.437 ± 0.009
Recall [U] 0.710 ± 0.045 0.586 ± 0.009
Recall [I] 0.359 ± 0.083 0.384 ± 0.009
Recall [A] 0.961 ± 0.016 0.311 ± 0.009
Recall [F] 0.864 ± 0.019 0.314 ± 0.009
Build_time (seconds) 10.866 ± 0.106 5.69 ± 0.305
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(1) The ml-CA-LTM model is not an effective tool to predict mixed LUC. It uses a
binary transformation method (with the BP neural network algorithm commonly
used in the LTM model for ml learning) and so it ignores the dependence among
labels.

(2) The ML-CA-LTM is an efficient tool to predict mixed LUC, with nonexclusive
LU classes.

There are many areas that need further research. First, future work is needed to solve the
class imbalance problem (certain labels are more abundant than others) to avoid the
misclassification of the less common classes of land use. Second, variables for popula-
tion, economic growth, zoning, planning, and policy factors could be added to demon-
strate the usability of the model, to control, provide bounds, and better forecast changes
in land use. Last but not least, other ML learning models should be considered (e.g.,
support vector machine, decision tree, logistic regression, instance-based learning or
nearest neighbors, among many others) for simulating mixed LUC.

Highlights

● We applied the multi-label concept in which a unit may have several elementary
labels.

● We integrated Land Transformation Model with a cellular automata model to
simulate multi-label or mixed land use changes.

● The new model performed better in capturing mixed land-use patterns.
● The outcome of modified model can be used by managers and decision makers for

urban planning.
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