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ARTICLE INFO ABSTRACT

Article history: Relieving phosphorus loading is a key management tool for controlling Lake Erie eutrophication. During the
Received 14 September 2013 1960s and 1970s, increased phosphorus inputs degraded water quality and reduced central basin hypolimnetic
Accepted 17 January 2014 oxygen levels which, in turn, eliminated thermal habitat vital to cold-water organisms and contributed to the

Available online 26 February 2014 extirpation of important benthic macroinvertebrate prey species for fishes. In response to load reductions initiat-

ed in 1972, Lake Erie responded quickly with reduced water-column phosphorus concentrations, phytoplankton
biomass, and bottom-water hypoxia (dissolved oxygen <2 mg/I). Since the mid-1990s, cyanobacteria blooms in-
creased and extensive hypoxia and benthic algae returned. We synthesize recent research leading to guidance for

Communicated by Leon Boegman

Iﬁffggﬁf' addressing this re-eutrophication, with particular emphasis on central basin hypoxia. We document recent
Hypoxia trends in key eutrophication-related properties, assess their likely ecological impacts, and develop load
Phosphorus load targets response curves to guide revised hypoxia-based loading targets called for in the 2012 Great Lakes Water Quality
Best management practices Agreement. Reducing central basin hypoxic area to levels observed in the early 1990s (ca. 2000 km?) requires

cutting total phosphorus loads by 46% from the 2003-2011 average or reducing dissolved reactive phosphorus

loads by 78% from the 2005-2011 average. Reductions to these levels are also protective of fish habitat. We pro-

vide potential approaches for achieving those new loading targets, and suggest that recent load reduction recom-
mendations focused on western basin cyanobacteria blooms may not be sufficient to reduce central basin
hypoxia to 2000 km?.
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Introduction (Depew et al., 2011; Higgins et al., 2008; Stewart and Lowe, 2008), and

Several anthropogenic stressors have impacted Lake Erie since
European settlement. However, phosphorus (P) loading has been par-
ticularly influential (Ludsin et al., 2001). During the 1960s and 1970s,
increased P inputs degraded water quality and reduced hypolimnetic
oxygen levels (Bertram, 1993; Makarewicz and Bertram, 1991; Rosa
and Burns, 1987). Reduced oxygen, in turn, eliminated thermal habitat
vital to cold-water organisms in the central basin (CB) (Hartman,
1972; Laws, 1981; Leach and Nepszy, 1976; Ludsin et al., 2001) and
contributed to the local extirpation of important benthic macroinverte-
brates and declines of several fish species (Britt, 1955; Carr and
Hiltunen, 1965; Ludsin et al., 2001). This development and control of
freshwater eutrophication by phosphorus loads is ubiquitous and well
documented (e.g., Schindler, 2006, 2012; Smith and Schindler, 2009).

In response, P abatement programs were initiated in 1972 as part of
the Great Lakes Water Quality Agreement (GLWQA) (DePinto et al.,
1986a). Lake Erie responded relatively quickly, as indicated by measur-
able decreases in total phosphorus (TP) loads (Dolan, 1993), water-
column TP concentrations (DePinto et al., 1986a; Ludsin et al., 2001),
phytoplankton biomass (especially cyanobacteria; Bertram, 1993;
Makarewicz et al., 1989), and bottom-water hypoxia (dissolved oxygen
<2 mg/1) (Bertram, 1993; Charlton et al., 1993; Makarewicz and
Bertram, 1991), as well as by recovery of several ecologically and eco-
nomically important fishes (Ludsin et al,, 2001). Although P abatement
was primarily responsible for improving water quality through the mid-
1980s, zebra (Dreissena polymorpha) and quagga (D. rostriformis
bugensis) mussel invasions during the late 1980s and early 1990s, re-
spectively, likely magnified these changes (Holland et al., 1995;
Maclsaac et al.,, 1992; Nicholls and Hopkins, 1993) and might have con-
tributed to the recovery of some benthic macroinvertebrate taxa (Botts
et al., 1996; Pillsbury et al., 2002; Ricciardi et al., 1997). Since the mid-
1990s, however, Lake Erie appears to be returning to a more eutrophic
state (EPA, 2010; Murphy et al., 2003), as indicated by increases in
cyanobacteria (e.g., Microcystis spp., Lyngbya wollei; Bridgeman et al.,
2012; Michalak et al., 2013; Stumpf et al,, 2012), the resurgence of exten-
sive benthic algae growth (particularly Cladophora in the eastern basin)

the return of extensive CB hypoxia (Burns et al., 2005; Hawley et al.,
2006; Rucinski et al., 2010; Zhou et al., 2013).

In 2005, EcoFore-Lake Erie — a multi-year, multi-institutional project
supported by the National Oceanic and Atmospheric Administration -
began with the goal of developing a suite of management-directed
models useful for exploring causes of changes in P loading, their impacts
on CB hypoxia, and how these changes might influence Lake Erie's high-
ly valued recreational and commercial fisheries. The EcoFore-Lake Erie
project focused on CB hypoxia because of uncertainty about the mecha-
nisms underlying its return to levels commensurate with the height of
eutrophication during the mid-20th century (Hawley et al., 2006) and
because of its great potential to harm Lake Erie's valued fisheries
(sensu Ludsin et al., 2001).

Herein, we provide a synthesis of the results from those efforts, as
well as work undertaken through other related projects, leading to
science-based guidance for addressing the re-eutrophication of Lake
Erie and in particular, CB hypoxia. In the following sections, we docu-
ment recent trends in key eutrophication-related properties and assess
their likely ecological impacts. We develop P load response curves to
guide revision of hypoxia-based loading targets, consistent with the
2012 Great Lakes Water Quality Agreement (GLWQA, IJC 2013),
and provide potential approaches for achieving the revised loading
targets.

Phosphorus loading trends
Total phosphorus loading

Total P loading into Lake Erie has changed dramatically through
time, with temporal trends driven in large part by implementing P
abatement programs as part of the GLWQA and inter-annual differences
responding to variable meteorology (Dolan, 1993). Following initial
implementation of nutrient abatement programs beginning in 1972,
TP inputs declined precipitously, reaching the GLWQA target loading
level of 11,000 MTA during the 1980s (Fig. 1; see Dolan and Chapra,
2012 for methods). Since then, loading has remained below the
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Fig. 1. Total phosphorus loads (TP) into Lake Erie during 1967-2011 from municipal and industrial point sources, monitored and estimated non-point sources (NPS), atmospheric depo-
sition, and inter-lake transfers. Sources of TP loads: Dolan (1993); Dolan and McGunagle (2005), Dolan and Chapra (2012), and D. Dolan, unpublished data. Current GLWQA loading goal is

11,000 metric tons per year.

GLWAQA target in most years. The initial declines were due primarily to
programs that reduced point sources of P (e.g., P restrictions in commer-
cial detergents, enhancements of sewage treatment plants), leaving
non-point sources as dominant (Table 1, Fig. 1) (Dolan, 1993; Richards
et al., 2001, 2010).

Dissolved reactive phosphorus

The earlier GLWQA (IJC, 1978) focused on TP as a key water quality
parameter by which Lake Erie eutrophication could be measured
(DePinto et. al., 1986a). However, recent focus has turned to dissolved
reactive phosphorus (DRP) (Richards, 2006; Richards et al., 2010) be-
cause this form of P is more highly bioavailable (DePinto et al., 1981,
1986b, 1986¢) to nuisance algae (e.g., Cladophora) and cyanobacteria
(e.g., Microcystis spp.). Moreover, DRP loads from several Lake Erie trib-
utaries (e.g., Maumee River, Sandusky River, Honey Creek, and Rock
Creek) have increased dramatically since the mid-1990s (Fig. 2,
Richards et al., 2010). Increases in DRP loading are in contrast to the rel-
atively constant TP loads from those same watersheds. As a result, the
portion of TP that is DRP more than doubled from a mean of 11% in
the 1990s to 24% in the 2000s.

To help understand this increase in the proportion of TP as DRP in
non-point sources, Han et al. (2012) calculated net anthropogenic P
inputs (NAPI) to 18 Lake Erie watersheds for agricultural census years
from 1935 to 2007. NAPI quantifies anthropogenic inputs of P from
fertilizers, the atmosphere, and detergents, as well as the net exchange
in P related to trade in food and feed. During this 70-year period, NAPI
increased through the 1970s and then declined through 2007 to a
level last experienced in 1935. This pattern was the result of (1) a dra-
matic increase in fertilizer use, which peaked in the 1970s, followed

Table 1
Distribution of total phosphorus loads among major source categories to Lake Erie (Dolan
and Chapra, 2012).

2003-2011 Average total Lake Erie loads (metric tons per year)

Non-point inputs to Lake Erie 6183
All point sources inputs 1884
Atmospheric inputs 525
Inputs from upstream Lake Huron 336
Total 8929

by a decline to about two-thirds of maximum values; and (2) a steady
increase in P exported in the form of crops destined for animal feed
and energy production (Han et al., 2012). The decline in fertilizer and
manure application between 1975 and 1995 overlapped with increased
efforts to reduce sediment and particulate P loading by controlling
erosion through no-till and reduced-till practices. In particular, these till-
age changes occurred in the Maumee and Sandusky River watersheds
mostly during the early 1990s (Richards et al., 2002; Sharpley et al., 2012).

During 1974-2007, individual riverine TP loads fluctuated (e.g., Fig. 2),
and were correlated with variations in water discharge. However, river-
ine TP export did not show consistent temporal trends, and did not
correlate well with temporal trends in NAPI or fertilizer use. Interesting-
ly, the fraction of watershed TP inputs exported by rivers (Han et al.,
2012) increased sharply after the 1990s, possibly because of changing
agricultural practices. Farm practices also may be responsible for the
increasing fraction of TP exported as DRP, which appears to have been
exacerbated by increases in extreme rainfall-runoff events over the
last 10 years (Daloglu et al.,, 2012; Sharpley et al,, 2012).

Daloglu et al. (2012) used the Soil and Water Assessment Tool
(SWAT) watershed model to explore these potential contributions to
the increase in DRP. The SWAT results suggest increased DRP export
was driven by increasing storm events, changes in fertilizer application
timing and rate, and management practices that increase P-stratification
of the soil surface. The frequency of extreme rain events has increased
since the early 1900s in this region, as has the number of prolonged
wet periods (Karl et al., 1998; Mortsch et al., 2000). However, weather
might not be the only source of this change. For example, Daloglu et al.
(2012) also demonstrated that while the current more extreme storms
appeared to stimulate large fluxes of DRP, those same weather patterns
imposed on agricultural landscapes of the 1970s did not.

Water quality trends
Phytoplankton biomass

The observed increases in DRP loading rates are important because
they may underlie increases in phytoplankton biomass in the western
basin (WB) and CB in recent decades, including potentially inedible
and toxic cyanobacteria such as Microcystis (Bridgeman et al., 2012;
Michalak et al., 2013; Ohio EPA, 2010; Stumpf et al., 2012). Phytoplank-
ton biomass in both the WB and CB decreased between the 1970s and
the mid-1980s, and then increased between 1995 and 2011 due to
high abundance of cyanobacteria, predominantly Microcystis spp.
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Fig. 2. Yields of total phosphorus (TP) and dissolved reactive phosphorus (DRP), as well as DRP yield as a % of TP, from four agricultural watersheds in the west and central basins of Lake

Erie, 1976-2012. Source: Richards et al. (2010); R.P. Richards (unpublished).

(Fig. 3). TP concentrations in the CB increased and water transparency
in the WB decreased during this same time period (Fig. 4). CB spring
surface chlorophyll a (CHL) concentration increased from ~3 pg/l in
1985-2000 to >19 pg/lin 2007, even though TP loads remained relative-
ly constant, doubling the CHL:TP ratio during this time period (Fig. 5).

Dissolved oxygen (DO)

Sedimentation of algae and fecal material drives DO depletion in the
hypolimnion of lakes by stimulating bacterial respiration. Corresponding-
ly, ecosystems undergoing eutrophication often demonstrate increases in
the magnitude, frequency, and duration of hypolimnetic hypoxia (Diaz
and Rosenberg, 2008; Hagy et al., 2004; Rabalais et al., 2002; Scavia
et al., 2004, 2006). In the case of Lake Erie, we would expect its largest
basin, the CB, to be most prone to hypolimnetic hypoxia because
it is deep enough to stratify but shallow enough that the thermocline
sets up relatively close to the lake bottom, reducing the hypolimnion
thickness (Charlton, 1980; Rosa and Burns, 1987). One of the impor-
tant mechanisms producing a deeper thermocline (and thinner
hypolimnion) is Ekman pumping due to the anticyclonic winds
(Beletsky et al., 2012, 2013). By contrast, the hypolimnetic volume
of the Eastern Basin (EB) is too large to be substantially depleted of

DO before fall turnover, and the shallowness of the WB causes its
water column to remain mixed most of the time (Bridgeman et al.,
2006).

While some CB hypolimnetic hypoxia is likely natural (Delorme,
1982), human activities during the second half of the 20th century ex-
acerbated the rate and extent of DO depletion (Bertram, 1993; Burns
et al., 2005; Rosa and Burns, 1987; Rucinski et al., 2010). P inputs stim-
ulated algal production; with subsequent algal settlement and decom-
position, DO depletion rates increased during the mid-1900s with
corresponding hypoxic areas as large as 11,000 km? (Beeton, 1963).
Average hypolimnion DO concentrations in August-September for CB
stations with an average depth greater than 20 m increased from less
than 2 mg/l in 1987 to over 6 mg/l in 1996, followed by an abrupt de-
crease to below 3 mg/I in 1998 with concentrations remaining low and
quite variable through 2011, the most recent year for which data are
available (Fig. 6). Zhou et al. (2013) used geostatistical kriging and
Monte Carlo-based conditional realizations to quantify the areal extent
of summer CB hypoxia for 1987 through 2007 and develop a probabilis-
tic representation of hypoxia extent. While substantial intra-annual
variability exists, hypoxic area was generally smallest during the mid-
1990s, with larger extents during the late 1980s and the early 2000s
(Fig. 7).
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Fig. 4. (Upper panel) Annual summer (June-August) mean water transparency in Lake
Erie's west basin and central basin, 1995-2011. Probability (p) and R? represent regression
of Secchi disk transparency across time. (Lower panel) Annual (May-September) mean
total phosphorus (TP) concentration in 1995-2012. Probability (p) and R? represent re-
gression of TP across time. Regression lines in both panels are only shown for significant
(p < 0.05) trends (Ecofore-Lake Erie Forage Task Group Report, unpublished data).

The increase in hypolimnetic DO from the 1980s to mid-1990s and
the subsequent decline during the late 1990s and 2000s (Fig. 6) are con-
sistent with trends in the DO depletion rate. Based on a simple DO
model, driven by a one-dimensional hydrodynamic model (Beletsky
and Schwab, 2001; Chen et al., 2002), Rucinski et al.(2010) demonstrat-
ed that the change in DO depletion rates reflected changes in TP loads,
not climate, between 1987 and 2005. Similarly, Burns et al. (2005)
showed that the depletion rate is related to the previous year's annual
TP load.

Impacts of hypoxia on the Lake Erie fish community

Several ecological processes that are influenced by hypoxia have the
potential to negatively affect individual fish growth, survival, reproduc-
tive success and, ultimately, population growth (e.g., Breitburg, 2002;
Coutant, 1985; Ludsin et al., 2009; Wu, 2009). Rapid changes in oxygen
concentrations may trap fish in hypoxic waters and lead to direct mor-
tality. In fact, there is recent evidence of such events in nearshore Lake
Erie, whereby wind-driven mass movement of hypoxic waters into
nearshore zones appears to have led to localized fish mortalities
(J. Casselman, Queen's University personal communication). While
such direct mortality due to low DO is possible, a more common imme-
diate fish response to hypolimnetic hypoxia is avoidance of bottom wa-
ters. Such behavioral responses can lead to shifts away from preferred
diets (e.g., Pihl, 1994; Pihl et al., 1992), increased total metabolic costs
and potential reproductive impacts by occupying warmer waters and
undertaking long migrations (e.g., Craig and Crowder, 2005; Taylor
et al., 2007), and enhanced compensatory density-dependent effects
through vertical and horizontal compression (e.g., Eby and Crowder,
2002). However, documenting these effects on fish growth, survival,
and significant, long-term population-level responses has proven diffi-
cult. Bottom hypoxia in many north temperate systems, such as Lake
Erie, persists for a short time period (days to months; Rucinski et al.,
2010), making hypoxia effects on fish difficult to distinguish from
other seasonal processes. In addition, while nutrient additions can exac-
erbate hypoxia, they can also increase system productivity and increase
prey production through bottom-up processes. Such positive effects can
be particularly strong if bottom hypoxia forces prey organisms higher in
the water column where many zooplankton taxa have higher growth
rates because of higher temperature, light, and phytoplankton abun-
dance (e.g., Goto et al,, 2012).

While definitive in situ ecological impacts have been hard to quanti-
fy, laboratory studies have demonstrated the potential for some Lake
Erie fish and zooplankton to be negatively affected by direct exposure
to low DO concentrations. For example, while the relatively tolerant
yellow perch (Perca flavescens) can survive at low DO concentrations,
both consumption and growth rates decline under hypoxia (Roberts
et al.,, 2011). Further, hypoxia may lead to reduced prey production
because some zooplankton prey species experience poor survival
under hypoxia (e.g., Daphnia mendotae; Goto et al., 2012). In contrast,
other zooplankton taxa seem to be able to survive prolonged hypoxia
(see Vanderploeg et al., 2009a), but may use the hypoxic zone as a ref-
uge from predation. Additionally, the growth and survival rates of some
preferred benthic prey (e.g., Chironomidae) are largely unaffected by
low DO conditions (Armitage et al,, 1995).

Potential in situ impacts of hypoxia on mobile fish species in Lake
Erie appear to be indirect and vary among species. For example,
hypoxia-intolerant rainbow smelt (Osmerus mordax) entirely avoid
hypoxic waters in CB by migrating horizontally or moving up into a
thin layer of the water column just above the hypoxic zone (Pothoven
et al,, 2012; Vanderploeg et al., 2009b). By contrast, while some yellow
perch move horizontally away from the CB hypoxic region, many
remain in this region, but move higher in the water column, and under-
take short feeding forays into the hypoxic zone (Roberts et al., 2009,
2012). Owing to these taxon-specific responses, hypoxia may reduce
the overlap between predator and prey or facilitate predator foraging
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success, as both prey and predator are squeezed into the same area of
the water column. In Lake Erie, the diets of emerald shiner, a warm-
water epilimnetic zooplanktivore, seemed unaffected by hypoxia
(Pothoven et al., 2009) and their foraging rates may even be increased
as zooplankton are forced into the epilimnion. By contrast, intolerant,
cold-water rainbow smelt displayed strong selection for Chironomidae
pupae and larvae during oxygenated periods, but consumed almost
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entirely zooplankton during hypoxia (Pothoven et al., 2009). More
tolerant fish species, such as white perch (Morone americana) and
yellow perch also altered their diets to consume more zooplankton in
response to hypoxia, but these shifts were more subtle (Roberts et al.,
2009, 2012). Finally, these species-specific distributional and foraging
responses to hypoxia are generally supported by seasonal trends in
fish condition in CB. While condition of emerald shiner improved from

2002 2007 2012

Fig. 6. Mean +/— 1 standard deviation of August-September mean hypolimnetic dissolved oxygen concentrations for central basin stations greater than 20 m depth compiled from the
Great Lakes National Program Office (GLNPO), Environment Canada: Water Science & Technology Branch (S. Watson pers. comm.), and the International Field Years on Lake Erie Program
(S. Ludsin and T. Johengen, unpublished data). Numbers of samples and sampling dates differ from year to year.
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Fig. 7. Estimated areal extent of central basin hypoxia developed through universal kriging and conditional realizations of bottom-water DO. The up to four sampling periods for each year
are defined as measurements taken in the following date ranges: August 1-12, August 13-22, August 23-September 5, and September 9-26. Solid circles on the x-axis represent cruises
where no DO values were reported below 2 mg/l. Source: Zhou et al. (2013). Solid line connects maximum values for each year.

summer into fall, rainbow smelt condition declined during hypoxia
(Ludsin et al. unpublished). Condition of tolerant yellow perch in Lake
Erie did not decrease during the height of hypoxia (Roberts et al.,
2009) and yellow perch RNA:DNA ratios (an index of short-term condi-
tion) did not reveal a strong negative response to hypoxia (Roberts
etal, 2011).

Modeling impacts of hypoxia on Lake Erie fishes

While empirical evidence points to a variety of taxon-specific nega-
tive and positive effects of hypoxia on fish feeding, growth, and produc-
tion in Lake Erie, the magnitude of such potential effects and their
population-level consequences remain open questions. Through the
Ecofore-Lake Erie program, we have explored such effects through a
variety of models. Given the variety of pathways through which hypox-
ia may affect fish vital rates, models differ in their relative emphasis on
diverse processes. The simplest and most straightforward approach has
consisted of developing statistical relationships between measures of
hypoxia and fish population metrics at the lake-basin scale. For exam-
ple, we found a significant negative relationship between the number

of modelled hypoxic (DO <2 mg/l) days and the condition (elative-
weight based) of both mature (2 + ) female and male yellow perch cap-
tured in the CB during fall (September—October) 1990-2005 (Fig. 8),
suggesting that observed distributional and foraging responses at hyp-
oxic CB sites during summer (Roberts et al, 2011) may have
population-level impacts.

Brandtetal. (2011) and Arend et al. (2011) modeled growth rate po-
tential (GRP) of selected fishes in the CB as a surrogate for fish habitat
quality. Brandt et al. (2011) argued that hypoxia had a temporary posi-
tive effect on walleye (Sander vitreus) GRP as prey fish were forced into
areas where temperature, DO, and light conditions were favorable for
efficient walleye foraging and growth. In contrast, Arend et al. (2011)
found that GRP of yellow perch, rainbow smelt, emerald shiner, and
round Goby (Neogobius melanostomus) improved with reductions in P
loading and hypoxia prior to the mid-1990s, but did not continue to
improve from the mid-1990s through 2005 (and may even have
decreased). Arend et al. (2011) also showed that hypoxia impacts
were most severe for adult stages of non-native species, including
cold-water rainbow smelt and round Goby, a benthic species that typi-
cally forages on the lake bottom. Hypoxia's impacts were least severe for

1.06
Females Males
104 ] 97" R?=045 | R?= 047
g ' P=0.005 97 P =0.004
T 1021 1
o
o
S 100 ]
Q
-1
_§ 098 - 1
@
>
0.96 - 91 1
91
0.94 - : - . : . - ; - ;
20 30 40 50 60 70 30 40 50 60 70

Number of Hypoxic Days (DO <2 mg/L)

Fig. 8. Relationship between the number of hypoxic days in the central basin of Lake Erie and the condition (relative weight) of yellow perch captured in central basin bottom trawls during
fall (September-October), 1990-2005. Condition was defined as the mean relative weight, i.e. observed mass divided by predicted mass, which was estimated from a sex-specific length-
mass relationship developed for Lake Erie yellow perch during this time period. Condition values greater than or less than one signifying above-average or below-average condition,
respectively. Data sources: hypoxic days (Rucinski et al., 2010); fish condition (Troy Farmer and the Ohio Division of Wildlife, unpublished data).
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adult and juvenile stages of yellow perch, a species that is native to Lake
Erie, and hence, may have evolved with hypoxia (sensu Delorme, 1982).

While a GRP modeling approach offers a more mechanistic means
than linear regression to estimate target nutrient loads, this approach
is static, and hence, cannot account for the likely feedbacks and indirect
effects that might exist as temperature and hypoxia vary through space
and time. For example, behavioral avoidance of hypoxia has been
shown to lead to highly dynamic predator-prey interactions and
density-dependent growth, and these changes in predator-prey inter-
actions can cascade to not only affect a single predator-prey pair, but
also the entire food web. Thus, we also have been exploring the effects
of hypoxia and other habitat attributes (e.g., temperature, prey avail-
ability) on fish using more dynamic approaches, such as individual-
and population-based bioenergetics simulations (individual-based
modeling; D. Goto, personal communication), fish population behavior
(patch-choice modeling; K. Pangle, personal communication), trophic
interactions (Ecopath with Ecosim; e.g. Langseth et al., 2012), and com-
prehensive ecosystem responses (Comprehensive Aquatic Systems
Modeling, CASM; e.g. Bartell, 2003). These modeling approaches differ
greatly in their spatial and temporal resolution and focus on the entire
foodweb versus a subset of abundant, representative species. The differ-
ential emphasis on behaviorally mediated habitat selection, trophic
interactions and trophic cascades among these models may lead to
somewhat dissimilar predictions regarding ecological effects of hypoxia
in Lake Erie. The integration of output from these diverse modeling
approaches collectively provide a suite of plausible forecasts, as well
as by help to identify key uncertainties that can guide future monitoring
and research decisions.

A new look at P loading targets

Because of increases in hypoxia since the mid-1990s and because
other eutrophication symptoms and potential impacts have become
stronger since then, consideration of new phosphorus loading targets
seems warranted. The use of models to assist in developing nutrient
loading targets for the Great Lakes has a long history. Bierman (1980)
reviewed their use as part of the negotiation of the earlier GLWQA, at
which time five models were used to develop P loading objectives.
The models ranged from simple, empirical correlations to complex
mechanistic models (Bierman and Dolan, 1976; Bierman et al., 1980;
Chapra, 1977; DiToro and Connolly, 1980; DiToro and Matystik, 1980;
Hydroscience, 1976; Thomann et al., 1975, 1976; Vollenweider, 1977).
Since that time, a variety of biogeochemical models have been devel-
oped to understand ecological interactions within Lake Erie and other
Great Lakes. While some models were constructed during the 1980s
(e.g., DePinto et al., 1986¢; Di Toro et al., 1987; Lam et al., 19873,
1987b; Scavia, 1980; Scavia and Bennett, 1980; Scavia et al., 1981a,
1981b; 1988), a new generation of models has emerged more recently
(e.g., Bierman et al., 2005; Fishman et al., 2009; Leon et al., 2011;
LimnoTech, 2010; Rucinski et al., 2010, 2014; Zhang et al., 2008; 2009).

For Lake Erie, Zhang et al. (2008) developed a two-dimensional eco-
logical model to explore potentially important ecosystem processes and
the contribution of internal vs. external P loads. Rucinski et al. (2010)
developed a one-dimensional model to examine the inter-annual vari-
ability in DO dynamics and evaluate the relative roles of climate and P
loading. Leon et al. (2011) developed a three-dimensional model to cap-
ture the temporal and spatial variability of phytoplankton and nutrients.
LimnoTech (2010) developed a fine-scale linked hydrodynamic, sedi-
ment transport, advanced eutrophication model for the WB that relates
nutrient, sediment, and phytoplankton temporal and spatial profiles to
external loads and forcing functions. Stumpf et al. (2012) developed a
model to predict the likelihood of cyanobacteria blooms as a function
of average discharge of the Maumee River.

As part of EcoFore-Lake Erie, Rucinski et al. (2014) developed and
tested a model specifically for establishing the relationship between P
loads and CB hypoxia. This model is driven by a one-dimensional

hydrodynamic model that provides temperature and vertical mixing
profiles as described in Rucinski et al. (2010). The Ekman pumping ef-
fect described above and in Beletsky et al. (2012, 2013) was in essence
parameterized as additional diffusion in the one-dimensional hydrody-
namic model. The biological portion of the model is a standard eutrophi-
cation model that used constant sediment oxygen demand (SOD) of
0.75 g0,-m~2-d~ ! because it has not varied significantly over the
analysis period (Matisoff and Neeson, 2005; Schloesser et al., 2005;
Snodgrass, 1987; Snodgrass and Fay, 1987). Earlier analysis (Rucinski
et al., 2010) indicated that SOD represented on average 63% of the
total hypolimnetic oxygen demand, somewhat larger than the 51%
and 53% contribution that Bouffard et al. (2013) measured in 2008
and 2009, respectively. However, for load-reduction scenarios, a new
formulation was needed to adjust SOD as a function of TP load. This
relationship (Rucinski et al., 2014), while ignoring the 1-year time lag
suggested by Burns et al. (2005), was based on an empirical relationship
between SOD and deposited organic carbon (Borsuk et al., 2001).

The model was calibrated over 19 years (1987-2005) using chloro-
phyll a, zooplankton abundance, phosphorus, and DO concentrations,
and was compared to key process rates, such as organic matter produc-
tion and sedimentation, DO depletion rates, and estimates of hypoxic
area (Zhou et al,, 2013) by taking advantage of a new empirical relation-
ship between bottom water DO and area (Zhou et al., 2013). It was further
tested with independent DO concentrations from the period 1960-1985.

Exploring loading targets for water quality

Rucinski et al.'s (2014) model was then used to develop response
curves for hypolimnetic DO concentration, hypoxic-days (number of
days per year with hypolimnetic DO below 2 mg/l), hypolimnetic DO
depletion rates, and hypoxic area as a function of loading of TP and
DRP into the WB and CB (Fig. 9). The resulting response curves incorpo-
rate uncertainty associated with interannual variability in weather and
resulting lake stratification from the 19 calibration years. The response
curves for hypoxic area and hypoxic days are used here to explore impli-
cations for new loading targets, as well as to discuss how such targets
would compare to those aimed at reducing WB cyanobacteria blooms.

While the actual extent of “acceptable hypoxia” needs to be set
through public discourse and policy, one reasonable expectation is to
return to hypoxic areas of the mid-1990s prior to the increases
(~2000 km?), which coincided with the recovery of several recreational
and commercial fishes in Lake Erie's WB and CB (Ludsin et al., 2001). By
inspection (Fig. 9a), the current US/Canadian TP loading target (IJC,
1978) of 11,000 MT (WB + CB equivalent is 9845 MT or 89.5% of total
lake TP load) is not sufficient. In fact, if the desired outcome is for aver-
age hypoxic area to not exceed 2000 km? for roughly 10 days per year,
the WB + CB TP load would have to be approximately 4300 MT/year
(4804 MT/year total lake load; Table 2). This is a 46% reduction from
the 2003-2011 average loads and 56% below the current target, or a
reduction of 3689 MT/year (4122 MT/year from the total lake load).

If this same hypoxic goal were used to set new targets for DRP load-
ing (Fig. 9b), the WB + CB load would have to approach 550 MT/year
(total equivalent load is 598 MT/year because WB + CB is 92% of the
total DRP), which is roughly equivalent to values in the early 1990s.
Because DRP load has increased so dramatically since that time, this
represents a 78% reduction from the 2005-2011 average DRP load, or
a reduction of 1962 MT/year (2133 MT/year from the total lake load).
Importantly, these response curves indicate that a focus on DRP requires
about half of the reduction of the TP target which is consistent with the
higher bioavailability of DRP.

Also noteworthy is the fact that recent recommendations to reduce
the occurrence of WB cyanobacteria blooms may not be sufficient to
also meet a CB hypoxia goal of 2000 km?. For example, the Ohio Lake
Erie Phosphorus Task Force recommended that to keep blooms to ac-
ceptable levels, the March-June Maumee River TP loads (as a surrogate
for all WB tributaries) should be less than 800 MT (Ohio EPA, 2013),
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Fig. 9. Relationship between hypoxic area and hypoxic days and annual loading of total
phosphorus (TP; upper panel) and dissolved reactive phosphorus (DRP; lower panel) in
Lake Erie's west and central basins. The vertical lines represent recent and current target
loads, and the shaded areas represent uncertainty around the hypoxic area response
curves associated with interannual weather variability. Horizontal lines represent poten-
tial target hypoxia areas corresponding to those of the 1990s. Source: Rucinski et al.
(2014).

which is a 31% reduction from the 2005-2011 average of 1160 MT (R.P.
Richards, pers. comm.). If all CB and WB non-point sources (5534 MT;
Table 2) were reduced by the same 31% and applied across the full
year, the resulting annual CB + WB TP load would be reduced from
7989 to 6273 MT/year, which is still considerably higher than the
4300 MT/year target identified above.

In setting lake-wide loading targets, a single solution to address both
water quality problems may be difficult (or impractical) to achieve. Our
analyses suggest that WB cyanobacteria and CB hypoxia endpoints need

Table 2

Relationships between west basin (WB) plus central basin (CB) versus lakewide total
phosphorus (TP) and dissolved reactive phosphorus (DRP) loads in metric tons per year
(MT/year) into Lake Erie, 2003-2011. Data from Dolan (unpublished data) based on
methods outlined in Dolan and McGonagale (2005) and Dolan and Chapra (2012).

WB + (B Total

WB + CBjtotal TP 89.5%

Current TP target 9845 11,000
2003-2011 TP loads 7989 8929
2003-2011 Non-point source loads 5534 6183
TP load to get 2000 km2 4300 4804
% Reduction from current TP load 46%

% Reduction from current TP target 56%

TP load reduced from current 3689 4122
WB + CB/Total DRP 92%

2005, 2007-2011 DRP loads 2512 2730
DRP load to get 2000 km? 550 598
% Reduction from current DRP load 78%

DRP load reduced from current 1962 2133

to be considered separately (Stumpf et al., 2012, Rucinski et al., 2014).
The focus on spring load in controlling WB cyanobacteria blooms (e.g.,
Ohio EPA, 2013) is a logical focus for CB hypoxia because much of the
load, particularly from non-point sources, enters the lake during that
period (Richards et al., 2010).

Potential loading targets for fishes

While estimating reductions in nutrient loads necessary for attaining
water quality goals is relatively straightforward, using fish metrics to
estimate appropriate nutrient loads presents a greater challenge for var-
ious reasons. First, fish species (and ontogenetic stages) vary in their
thermal responses and sensitivity to low oxygen conditions and direct
responses to low oxygen will be species- and life stage-specific. Second,
nutrient inputs and hypoxia do not only influence fish health directly;
they also indirectly affect fish by altering the availability of quality
habitat (e.g., DO availability, prey availability, water clarity) for growth,
survival, and reproduction. Further, individual- and population-level re-
sponses to nutrient-driven changes in habitat quality can be mediated
by a variety of individual behaviors that we do not fully understand
(e.g., horizontal and vertical movement) and both intra-specific and
inter-specific interactions that vary through both space and time (Eby
and Crowder, 2002; Rose et al., 2009). Third, the variety of individual,
population, and community indices that could be used to quantify re-
sponses of fish to hypoxia (e.g., habitat suitability, spatial distributions,
feeding patterns, growth, survival, reproductive success, and overall
production of population biomass) will not respond uniformly to hyp-
oxia. As such, hypoxia targets based on expected fish responses would
need to consider not only differential responses across species and onto-
genetic stages, but also potentially different responses across population
and community metrics.

As described above, different modeling strategies allow for focusing
on various pathways through which hypoxia may affect fish popula-
tions. Relatively straightforward approaches may include statistical
relationships based on several years of monitoring of hypoxia and
population metrics or quantifying the amount of suitable habitat for a
specific species (e.g., Arend et al., 2011) while more dynamic models
may emphasize how behavior and biological interactions may mediate
species-specific responses. To illustrate how models can be used to
identify nutrient loading targets based on fish responses, we applied
Arend et al.'s (2011) model of growth rate potential based on outputs
from Rucinski et al.'s (2014) one-dimensional (daily, 0.5 m depth
cells) limnological model, applied under various annual nutrient load-
ing levels and climate conditions. Specifically, we applied the model
for adult and juvenile yellow perch (i.e., a cool water species, relatively
tolerant of low oxygen concentrations) and rainbow smelt (a cold water
species, sensitive to low oxygen), as well as adult emerald shiner and
round Goby (Fig. 10). For each species and climatic scenario, habitat
quality (e.g., the percent of modeled habitat with positive growth
potential) declined with increasing annual TP loads, with the sharpest
reductions in habitat quality occurring after TP levels exceeded
~5000 MT/year. This modeling exercise clearly illustrates the potential
for reductions in nutrient-driven hypoxia to positively influence habitat
quality for Lake Erie fishes, especially adult rainbow smelt and round
gobies (Fig. 10). Moreover, the greatest increases in fish habitat quality
would occur at roughly the same load reduction described above for the
potential hypoxia goal (4000-5000 MT /year).

Approaches to meet new targets

If reducing hypoxic area to 2000 km? were desired, the above anal-
yses indicate a load reduction of 3689 MT/year from the WB and CB
loads (Table 2). A comparison of the potential reductions from point
and non-point sources (Fig. 11), based on the current load breakdown
described in Table 1, shows that with even the drastic measure of elim-
inating all point sources, substantial non-point source reductions would
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Fig. 10. Annual habitat quality for six species of fish common to central Lake Erie. Annual habitat quality is indexed as the percent of daily 0.5 m depth cells with positive growth rate
potential (GRP) from July 15-Oct 31 (i.e., 109 days x 48 depth cells = 5232 total cells per year). To estimate GRP, we used daily, depth-specific temperature and dissolved oxygen
concentrations, which were simulated with the model of Rucinski et al. (2014) and the age- and species-specific bioenergetics models developed by Arend et al. (2011). Estimates of
GRP were quantified across 3 years of contrasting temperature (cool = 1992; intermediate = 1990; warm = 2002; see Rucinski et al. (2014) and 19 nutrient loading levels (1997

base loads scaled by a factor of 0.1-1.9).

be necessary. Because of this and because increases in the frequency and
magnitude of winter and spring storm events (Kling et al. 2003; Kunkel
et al., 1999) will draw additional attention to non-point sources
(Daloglu et al., 2012), the following sections focus on the more difficult
challenge of prioritizing actions for controlling non-point sources of
nutrients.

Spatial distributions of loading sources

Phosphorus loads to Lake Erie are not distributed equally across the
basin. The WB received approximately 60% of the 2003-2011 average
TP loads; whereas the CB and EB received about 30% and 10%, respec-
tively. The WB received 68% of the 2005, 2007-2011 average DRP
loads; whereas the CB and EB received 24% and 8%, respectively. The
loads from individual tributaries within each basin also vary consider-
ably for both TP and DRP, with the largest contributions coming from
the Maumee, Detroit, Sandusky, and Cuyahoga rivers (Fig. 12). Thus, it
is clear that loads to the WB are a very important determinant of the
WB and CB eutrophication response.

The sources and fates of watershed TP also vary considerably. As de-
scribed previously, Han et al. (2012) quantified the net anthropogenic
TP inputs for 18 U.S. watersheds from fertilizers, atmosphere, deter-
gents, and the net exchange in food and feed. TP budgets were also
constructed for the soil and water compartment of each watershed,
and those are especially helpful for comparing inputs. Here, we re-
categorize inputs and outputs as TP from fertilizers, animal manure,
atmosphere, human loading, and net crop export (Fig. 13). While TP
inputs to the Lake St. Clair, Clinton, Detroit, Huron, Cuyahoga, and
Ashtabula watersheds (#2-4, 13, 14) are dominated by human sources,
inputs to the St. Clair, Ottawa-Stony, Raisin, Maumee, Cedar-Portage,
Sandusky, Huron-Vermilion, and Cedar Creek watersheds (#1, 6-11,
24) are dominated by fertilizer; and inputs to the Grand (Ont) and
Thames watersheds (#19, 20) are dominated by manure.

Just as tributary loads are not evenly distributed among major wa-
tersheds, non-point sources within those watersheds vary considerably.
To explore this heterogeneity, Bosch et al. (2013) applied calibrated
SWAT models (Bosch et al., 2011) of the Huron, Raisin, Maumee,
Sandusky, Cuyahoga, and Grand watersheds representing together 53%


image of Fig.�10

236 D. Scavia et al. / Journal of Great Lakes Research 40 (2014) 226-246

of the binational Lake Erie basin. These authors simulated subwatershed
average annual TP and DRP yields (Fig. 14) for 1998-2005. Their results
indicate, for example, that the Maumee River subwatersheds with the
highest DRP yield were located sporadically throughout the watershed;
whereas, those yielding high TP loads were found primarily in its upper
reaches. By contrast, high-yield subwatersheds for both DRP and TP
were dispersed throughout the Sandusky River watershed; while
subwatersheds in the upper reaches of the Cuyahoga River watershed
were the greatest sources of both DRP and TP. Findings such as these
led Bosch et al. (2013) to conclude that DRP and TP flux is not uniformly
distributed within the watersheds. For example, 36% of DRP and 41% of
TP come from ~25% of the agriculturally dominated Maumee River sub-
watersheds. Similar disproportionate contributions of DRP and TP were
found for the Sandusky River watershed (33% and 38%, respectively) and
Cuyahoga watershed (44% and 39%, respectively).

These collective results suggest that spatial targeting of manage-
ment actions would be an effective P reduction strategy. However, it is
important to note that these loads represent flux to the stream channels
at the exit of each subwatershed, not P delivered to the lake. Thus, the
maps of important contributing sources of TP and DRP to the lake
could be different if flux to the lake were considered.

Agricultural BMPs

In addition to identifying potential sources of TP and DRP to the Lake
Erie ecosystem, the EcoFore-Lake Erie program sought to evaluate how
land-use practices could influence nutrient inputs that drive hypoxia
formation. In the following sections, we review some of the available
best management practices (BMPs) and use SWAT modeling to test
their effectiveness in influencing nutrient flux.

McElmurry et al. (2013) reviewed the effectiveness of the current
suite of urban and agricultural BMPs available for managing P loads to
Lake Erie. Because of the dominance of agricultural non-point sources,
we focus here on agricultural BMPs. The Ohio Lake Erie Phosphorus
Task Force also recommended a suite of BMPs for reducing nutrient
and sediment exports to Lake Erie (OH-EPA 2010).

Source BMPs (Sharpley et al., 2006) are designed to minimize P pol-
lution at its source. Efficient fertilizer management is reflected in the “4R”
stewardship framework, based mostly on Roberts (2007), which focus-
es on applying the right formulation at the right rate and right times in
the right places. While the appropriate application method is deter-
mined by the crop, cropping systems, and soil properties, methods
that place the fertilizer in contact with the soil (e.g. injection, in-row
placement) and away from the surface are preferred. Animal feed
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Fig. 11. Hypothetical allocations of the 3689 MT/year load reduction needed to achieve
2000 km? hypoxic area between point and non-point sources in Lake Erie's western and
central basins.

management controls the quantity and quality of available nutrients,
feedstuffs, or additives in feed thereby improving efficiency; reducing
nutrients and pathogens in manure; and reducing odor, particulate
matter, and greenhouse gas emissions. Manure management minimizes
manure loss during storage, and land application at agronomically
appropriate amounts.

Transport BMPs are designed to reduce the runoff of P with water
and sediments. Conservation Tillage leaves at least 30% of the soil surface
covered with crop residue to reduce soil erosion through mulch-till,
strip-till, no-till, and ridge-till techniques. However, recent studies sug-
gest that the often-associated broadcast fertilization techniques may
lead to elevated DRP loss (e.g., Daloglu et al., 2012; Seo et al., 2005;
Sweeney et al.,, 2012; Tiessen et al., 2010; Ulen et al., 2010). Conservation
Cropping and Buffers are designed to reduce sediment and nutrient
runoff, and in some cases, provide vegetative cover for natural resource
protection. Treatment Wetlands treat runoff from agricultural processing
and storm runoff and grassed waterways are designed to reduce gully
erosion. Wetlands and grassed waterways are effective in reducing
P loading, and grassed waterways are most effective in reducing erosion
(Dermisis et al., 2010; Fiener and Auerswald, 2003; Fisher and Acreman,
2004). Drain Tiles are designed to facilitate movement of water from the
field, and if flow to the tile is through the soil matrix, sediment, particu-
late P (PP), and DRP losses are minimized. However, recent work has
suggested that preferential flow through worm holes and soil cracks,
for example, brings surface water and its constituents directly into the
tiles (Gentry et al., 2007; Reid et al., 2012). So, Drain Management ac-
tions that slow down or retain water can reduce particulate nutrients,
pathogen, and pesticide loading from drainage systems.

Focus on management of DRP

Given the dramatic increase in the proportion of TP that is delivered
to Lake Erie from agricultural watersheds as DRP, differentiating be-
tween BMPs focused on particulate P (PP) vs. DRP is important. While
TP is generally considered to be only partially bioavailable (Baker,
2010), most of DRP is bioavailable. The combination of movement
toward no-till and associated broadcast application appears to have ex-
acerbated loss of DRP from no-till lands. Seo et al. (2005) reported DRP
as 70% of TP in runoff from a no-till/broadcast fertilized field, and Ulen
et al. (2010) reported that DRP losses increased by a factor of four in a
no-till compared to conventional-till systems. Likewise, Tiessen et al.
(2010) reported that conversion to conservation tillage increased P
concentrations and exports, mostly as soluble P, especially during snow-
melt. Kleinman et al. (2011) showed that while PP decreased by 37% in a
no-till vs. conventional-till watershed, TP increased by 12%, with that
increase attributed to dissolved P mediated by high concentrations of
surface soil P. BMPs that lower the accumulation of P at the soil sur-
face should be considered in areas where DRP is a major concern
(Tiessen et al., 2010). A summary of BMPs that focused on controlling
DRP (Crumrine, 2011) outlines their potential effectiveness, costs, and
likelihood of use.

Evaluating watershed-scale effectiveness of traditional
agricultural BMPs

Bosch et al. (2013) explored the impacts of expanding the current
use of filter strips, cover crops, and no-till BMPs in controlling runoff.
When implemented singly and in combinations at levels currently
considered feasible by farm experts, these BMPs reduced sediment and
nutrient yields by only 0-11% relative to current values (Fig. 15). Yield
reduction was greater for sediments and the greatest reduction was
found when all three BMPs were implemented simultaneously. They
also found that targeting BMPs in high source locations (see above),
rather than randomly, decreased nutrient yields more; whereas, reduc-
tion in sediment yields was greatest when BMPs were located near the
river outlet. A more detailed analysis of increased BMP implementation
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source: David Dolan, unpublished.

strategies for the Maumee watershed (Fig. 16) pointed to the need for
more aggressive implementation of multiple BMPs to reduce loads
substantially. For example, a 20% reduction in TP or DRP load requires
implementing the BMPs on more than 50% of the agricultural land.

Climate change implications
Meteorological conditions, including both temperature and precipi-

tation, have changed appreciably during the past century in the
Great Lakes basin, with increased temperature and winter/spring

precipitation expected into the future (Hayhoe et al., 2010; Kling et al.
2003). Thus, establishing loading targets to control Lake Erie hypoxia
should consider how potential climate change might impact loads, pro-
cesses that lead to hypoxia formation, fish, and BMP effectiveness.

Watershed impacts
While uncertainty surrounding the projected future regional precip-

itation is greater than for temperatures, confidence is increasing that fu-
ture precipitation patterns will continue to trend toward more intense
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late-winter and early spring precipitation events (Hayhoe et al., 2010).
Such intense events could lead to higher nutrient runoff, and in the ab-
sence of dramatic changes in land use, could increase overall nutrient
loads because 60-75% of P inputs are delivered during precipitation-
driven river discharge events (Baker and Richards, 2002; Dolan and
McGunagle, 2005; Richards et al., 2001). A preliminary study of the im-
pact of climate change on the Maumee River (DeMarchi et al., 2011)
suggested a 10-30% increase in sediment load, depending on the gener-
al circulation model (GCM) and greenhouse gas emission scenario. In
fact, these changes have already been happening. Daloglu et al. (2012)
showed through modeling efforts that higher frequency intense storms
of today's climate is a key driver of elevated DRP loads from the Sandusky
River watershed. Similarly, Michalak et al. (2013) showed that such
extreme precipitation events in 2011 drove substantially higher P loads,
resulting in massive WB and CB cyanobacteria (Microcystis) blooms.

Hypoxia formation impacts

Lower water levels predicted by some climate models (Angel and
Kunkel, 2010) would lead to a thinner hypolimnion (Lam et al., 19874,
1987b) and increase in DO depletion (Bouffard et al., 2013). Warmer
future temperatures (Hayhoe et al., 2010; Kling et al., 2003) should
lead to a longer summer stratified period, with thermal stratification de-
veloping earlier in the year and turnover occurring later in the year
(Austin and Coleman, 2008). A longer stratified period would allow
hypolimnetic oxygen to be depleted over a longer time period and
warmer hypolimnetic temperatures could lead to higher respiration
rates and more rapid DO depletion (Bouffard et al., 2013). Changes in
the wind regime (Pryor et al., 2009) will have important effects on
lake stratification (Huang et al., 2012), impacting hypoxia formation

as well. Climate models predict an almost negligible increase in the
mean wind speed in the next 50 years (Pryor and Barthelmie, 2011), al-
though the frequency of extreme storms is expected to increase (Meehl
et al., 2000). The result of increased strong winds will be a deeper ther-
mocline (thinner hypolimnion) and likely increased rate of DO deple-
tion (Conroy et al., 2011). Adding uncertainty to predictions of future
hypolimnion thickness are potential changes in wind vorticity that con-
trols thermocline depth through the Ekman pumping mechanism
(Beletsky et al., 2013).

Fish impacts

Previous modeling has indicated that warm-water, cool-water, and
even some cold-water fishes could benefit from climate change in the
Great Lakes basin due to increased temperature-dependent growth
(Minns, 1995; Stefan et al., 2001), lengthened growing seasons
(Brandt et al., 2011; Cline et al.,, 2013), and increased over-winter sur-
vival of juveniles (Johnson and Evans, 1990; Shuter and Post, 1990).
However, these expectations may not hold for cool- and cold-water
fishes in the CB under increased intensity and duration of hypoxia. For
example, by using a bioenergetics-based GRP model to compare a rela-
tively warm year with prolonged hypoxia extending far above the lake
bottom (e.g., 1988, a type of year that we would expect to become
more frequent with continued climate change) to a relatively cool
year with a thin hypoxic layer persisting for a short time (e.g., 1994, a
type of year that we would expect to become less frequent in the fu-
ture), we explored how climate change might influence fish habitat
availability. The results of this analysis (also see Arend et al., 2011), sug-
gest that climate warming can cause preferred habitat to be squeezed
both from above (by warmer temperatures) and from below (via


image of Fig.�13

D. Scavia et al. / Journal of Great Lakes Research 40 (2014) 226-246 239

N
" Average annual TP
5 yleld (kg P/ha)
Average annual SRP [ ]o10-084
yleld (kg Piha) B oss.
[ oo09-002 — ol
[ oo13-0014 = :7:: ;;:
- 0015-0017 E3 2’25 -257
[ 0018- 0020
B 00z1- 0025 {

Cuyahoga

Average annual TP

Average annual SRP yield (kg P/a)
yleld (kg Pa) =)
! [ o8.109
| 0.008-0.017 N I 110. 178
N [0 00180022 B 177242
I 0023-0.028 [ ] z.u- ‘
I 0029-0037 . -

[ o.038-00%0

Maumee

Average annual TP

A;ioull':g‘: ;':"?::)l SRP yleld (kg P/ha)

N [ | oo28-0040 \ il
[ oo41-0070 + gl

__‘l _ — B 17s-232

B z233-285

B 00530112
B zos-205

I 0113-0.145

Sandusky

Fig. 14. Average annual dissolved reactive phosphorus (DRP) and total phosphorus (TP) yields from sub-basins of three major Lake Erie watersheds. Yields represent loss from the land, not
delivery to the lake. Source: Bosch et al. (2013).


image of Fig.�14

240 D. Scavia et al. / Journal of Great Lakes Research 40 (2014) 226-246

(2]
o

40

Daily TP load (kg P/km?)

20

Huron
Raisin
Grand
m Sandusky
B Maumee
m Cuyahoga
/" Cuyahoga

Maumee
Sandusky

Grand
’ ' Raisin

Huron

Fig. 15. Comparison of reduction in daily TP yield from implementing “feasible” best management practices, including no-till, cover crop, filter strips and a combination of all three, for six

Lake Erie Watersheds as predicted by SWAT model scenarios. Source: Bosch et al. (2013).

increased hypoxia) (Fig. 17). In fact, the influence of inter-annual varia-
tion in water temperature may have a stronger effect on fish habitat
quality than nutrient loading (Fig. 10). Under a warmer climate, we
may need to reduce loading levels even more dramatically to have
meaningful positive effects on habitat quality and Lake Erie fish stocks
(Shimoda et al.,, 2011).

Climate impacts on BMP effectiveness

Bosch et al. (in revision) assessed climate impacts on a range of BVPs
with the SWAT model. They projected water flow, sediment yields, and
nutrient yields (Figs. 18, 19), based on simple characterizations of future
climates (Table 3) consistent with those projected from climate models
(Hayhoe et al., 2010). These watersheds showed consistent increases in
sediment yield, with increases being larger under more pronounced cli-
mate scenarios. They also found that under a warmer climate, sediment
and nutrient yields would be greater from agricultural (e.g., Maumee
and Sandusky) vs. forested watersheds (e.g., Grand in Ohio). Total annual
discharge increased 9-17% under the more pronounced climate scenario
and 4-9% under the moderate scenario. Stream sediment yields increased
by 9% and 23% for moderate and pronounced climate scenarios, respec-
tively. DRP yields decreased (—2% on average) under the moderate
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Fig. 16. Average annual percent reduction in riverine yields for the Maumee watershed
under various implementation extents (% of agricultural land area) of combined BMP
conditions as predicted by SWAT model scenarios. Source: Bosch et al. (2013).

climate scenario and increased slightly (3%) in response to more pro-
nounced climate change. TP yields increased 4% under moderate climate
change and 6% under pronounced climate change. Importantly, while ag-
ricultural BMPs might be less effective under future climates, higher BMP
implementation rates could still substantially offset anticipated increases
in sediment and nutrient yields (Fig. 19).

Implications for policy and management action

If “acceptable levels” (or goals) for hypoxia were set, the above-
described response curves could be used to establish P loading targets.
Given the emergence of DRP as a significant and increasing component
of the total phosphorus load, the research presented above supports con-
sidering both TP and DRP targets. In addition, because the results of man-
agement actions aimed at addressing non-point sources tend to occur on
the scale of years to decades, potential impacts of a changing climate need
to be taken into consideration for effective action. The indications we have
discussed suggest that climate change will not only exacerbate existing
problems, but also make reducing loads more difficult.

Whole-lake targets alone may no longer be appropriate due to differ-
ences in temporal and spatial scales of loading on hypoxia and other en-
vironmental stressors. For example, CB hypoxia evolves over a longer
seasonal time frame in response to loads distributed over wider spatial
and temporal scales as evidenced by gradual oxygen depletion and the
dependence on total lake loads (e.g. Burns et al., 2005; Rosa and Burns,
1987; Rucinski et al., 2010, 2014). Whereas, WB cyanobacteria blooms
appear to be driven by relatively short-term loads of immediately avail-
able P (Michalak et al., 2013; Stumpf et al., 2012; Wynne et al., 2013).
Thus, while a recent assessment demonstrated that the Detroit River
had little impact on the massive 2011 cyanobacteria bloom (Michalak
et al.,, 2013), it does not mean that the river is not an important driver
for hypoxia; hypoxia development is a cumulative process that can be
influenced by longer term loads of both immediately available DRP
and P that is made available through internal recycling mechanisms
over the summer. Thus, a new loading target aimed at reducing or elim-
inating cyanobacteria blooms might be insufficient in both magnitude
and geographic proximity to reduce hypoxia. Because the major compo-
nents of the P load are now from non-point sources, and because re-
sources available to address those sources will always be limited,
management efforts will be most cost effective if placed on sub-
watersheds that deliver the most P. We now have the ability to identify
not only the most important contributing watersheds (e.g., Detroit,
Maumee, Sandusky), but also the regions within those tributary
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watersheds that release the most P. This knowledge should allow for
more effective targeting of BMPs to high-load subwatersheds, assuming
that the stakeholders in those regions are open to these options. For this
reason, research that identifies factors that drive land-use decision-
making behavior and how these motivations and behaviors vary across
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Table 3

Future climate scenarios (moderate and pronounced) for temperature and precipitation
used in the SWAT model. Seasons were defined as Winter (December-February), Spring
(March-May), Summer (June-August), and Fall (September-November). From Bosch
etal. (in revision).

Moderate Pronounced

Temperature Precipitation Temperature Precipitation
Season (°C) (%) (°Q) (%)
Winter +2 +5
Spring +11 +29
Summer +4 +7
Fall -7

the watershed will be essential to help policy-makers determine the
ability to meet any newly developed loading targets through implemen-
tation of spatially-targeted BMPs.

For example, current farm policy is based on volunteer, incentive-
based adoption of BMPs. The 2014 U.S. Farm Bill includes a focus on spe-
cial areas and replacing subsidies with revenue insurance, providing op-
portunities to employ more targeted approaches. Daloglu et al. (in
press) point out that farmer adoption will be critical, and their analysis
suggests that coupling revenue insurance to conservation practices re-
duces unintended consequences. For example, using a social-
ecological-system modeling framework that synthesizes social,
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Fig. 19. Predicted average annual stream flow(panel A), sediment load (panel B), total phosphorus (TP) load (panel C), and total nitrogen (TN) load (panel D) for the Maumee watershed
under various climate change and best management practice (BMP) conditions. In each panel, a horizontal line marks the baseline (no climate change and no BMPs) condition for flow or

load. Source: Bosch et al. (in revision).
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economic, and ecological aspects of landscape change under different
agricultural policy scenarios, Daloglu (2013) and Daloglu et al. (in
press) evaluated how different policies, land management preferences,
and land ownership affect landscape pattern and subsequently
downstream water quality. This framework linked an agent-based
model of farmers' conservation practice adoption decisions with
SWAT to simulate the influence of changing land tenure dynamics and
the crop revenue insurance in lieu of commodity payments on water
quality over 41 years (1970-2010) for the predominantly agricultural
Sandusky River watershed. The results showed that non-operator
owner involvement in land management decisions yielded the highest
reduction in sediment and nutrient loads and that crop revenue insur-
ance tended to create a homogeneous conservation landscape with
slight increases in sediment and nutrient loads. However, it also
suggested that linking crop insurance to conservation compliance and
strengthening and expanding conservation compliance provisions
could reduce nutrient loads. Daloglu (2013) and Daloglu et al. (in
press) demonstrated, for example, that DRP load decreased by 6%
with conservation compliance that included structural BMPs, as com-
pared to an increase of 8% without compliance. The relatively small
percent changes, however, reinforce the recommendation of Bosch
et al. (2013) that significantly more BMP implementation is needed.

Experiences in other large regions with nutrient problems (e.g., Ches-
apeake Bay, Gulf of Mexico/Mississippi River) have shown that signifi-
cantly reducing non-point source loads is difficult. Not only are the
sources spatially distributed, but the methods used are primarily volun-
tary and incentive based and thus difficult to target and track. Reducing
non-point inputs of sediments and nutrients is also difficult because the
response time between action and result can be many years or longer,
and the results can only be measured cumulatively in space and through
time. For these reasons, we recommend the use of an adaptive manage-
ment approach that sets “directionally correct” interim targets, evaluating
the results both in loads and lake response on appropriate time-scales
(e.g., 5-year running averages), and then adjusting management actions
or loading targets, if necessary. Lake Erie is a good candidate for such an
approach because its short water residence time (2.6 years) reduces
one common time-lag in system response. Such an approach would also
allow for more effective testing and post-audits of the ability of models
to project the ecosystem's response and thus improve subsequent assess-
ments and projections. We see this iteration of research and analysis,
management-focused model development and application, management
action, and monitoring of results as a particularly effective way to manage
large, spatially complex ecosystems. If the monitored results are not as
anticipated, returning to research and model refinement establishes a
learning cycle that can lead to better informed decisions and improved
outcomes.
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