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Abstract: Land cover data are often used to examine the impacts of landscape alterations on the
environment from the local to global scale. Although various agencies produce land cover data at
various spatial scales, data are still limited at the regional scale over extended timescales. This is a
critical data gap since decision-makers often use future and long-term land cover maps to develop
effective policies for sustainable environmental systems. As a result, land change science incorporates
common data mining tools to create future land cover maps that extend over long timescales. This
study applied one of the well-known land cover change models, called Land Transformation Model
(LTM), to produce urbanization maps for the Lower Peninsula of Michigan in United States from 2010
to 2050 with five year intervals. Long-term urbanization data in the Lower Peninsula of Michigan
can be used in various environmental studies such as assessing the impact of future urbanization on
climate change, water quality, food security and biodiversity.

Data Set: available as a supplementary file.

Data Set License: CCBY

Keywords: land cover; data mining, urbanization; Lower Peninsula of Michigan; long-term; land
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1. Introduction

Humans alter the landscape to meet their resource needs [1]. One considerable landscape change
in response to human interaction includes urbanization [2]. Environmental planners have raised
concerns about the amount of land that urbanization occupies, especially in the United States and
other developed nations [3]. While only 2.7% of the world's land is currently occupied by urban
development, increased urbanization often leads to the intensification of global resources (e.g., water,
food, soil). With global demographic trends projecting 2.5 billion more urban residents by 2050 [4],
urbanization will continue with the potential negative impacts on environment and various ecosystem
services [5]. Long-term land cover data, especially future urbanization data, play a significant role in
better understanding the future impacts of land cover changes on multiple ecosystem services [6] such
as biodiversity, climate change, water quality and food security [7–11].

A variety of agencies have produced land cover data from the local to global scales, covering
different time periods and different spatial resolutions, such as Moderate Resolution Imaging
Spectrometer [12], National Land Cover Data (NLCD) [13], International Geosphere–Biosphere
Program [14], and GlobCover [15]. Most of these historical land cover products created from remote
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sensing sensors are coarse resolution data and limited in long-term time intervals [16,17]. In terms of
spatial resolution, for example, Global Land Cover and Moderate Resolution Imaging Spectrometer
are at 1 km and 500 m, respectively. In terms of temporal resolution, NLCD has land cover data for
entire United States only for 1992, 2001, 2006, and 2011. Decision-makers often use future land cover
maps to develop effective policies for sustainable future environments [18]. To overcome the limitation
of coarse resolution land cover data and their long-term time intervals, we incorporated a land cover
change model called Land Transformation Model (LTM) to create future high resolution land cover
maps (e.g., 30 m) from 2010 to 2050 with five year intervals for the Lower Peninsula of Michigan in
United States [19].

Land cover change is a very complex process driven by non-linear factors, including public policy,
behavior, economics, and a variety of biophysical and geographic factors, operating at a variety of
spatial and temporal scales [20–22]. The complex nature of land cover change relationships requires use
of modern data-mining tools to extract underlying patterns in land cover change data [23]. A variety
of data mining approaches including empirical [24], dynamic [25], rule-base [26], agent-based [27] and
machine learning techniques [1,2,15] have been applied in land change science.

A variety of studies have compared existing land cover change models with each other across the
globe. Many of these studies have shown that machine learning techniques, such as artificial neural
network (ANN), performed more accurately than other models [23,28]. ANN is inspired by the way
biological nervous systems (e.g., brain) process information. ANN is composed of a large number
of interconnected processing elements called neurons working together to solve specific problems.
Within the ANN, the learning process involves adjustments to the synaptic connections that exist
between the neurons.

The Land Transformation Model (LTM) as a data mining approach simulates large-scale land
cover change by integrating remote sensing and GIS data within an ANN [28]. The LTM has been used
to forecast land cover change in a variety of areas across the world, such as the United States [1,29],
Europe [30] eastern Africa [23] and Asia [31]. Primarily, the LTM has been used to (1) determine
the uncertainty levels of land change model outputs at a variety of spatial-temporal scales and land
change contexts [32]; (2) couple other process-based models to understand how land cover alters
climate [33,34] and water [26,35] and ecosystem dynamics; and (3) generate baseline data layers for
online decision making tools [36,37]. Here, we applied LTM to produce urbanization maps for the
Lower Peninsula of Michigan in United States from 2010 to 2050 with five-year intervals.

2. Data Description

2.1. Study Area

We used the Lower Peninsula of Michigan as the primary boundary (Figure 1), which includes the
areas that drain into the adjacent Great Lakes, incorporating parts of the Chicago metropolitan area,
northern Indiana, and the Toledo metropolitan area. Nearly 10 million people live in Michigan’s Lower
Peninsula, and more than 15 million people when including the boundary extent [38]. The largest
metropolitan areas include Chicago, Detroit, Grand Rapids, Kalamazoo, Lansing, South Bend, Toledo,
and Traverse City. The main commodities produced include corn, soybeans, wheat, hay, cherries,
apples, blueberries, potatoes, cucumbers, dry beans, and sugar beets. These eleven commodities
account for nearly 98% of the agricultural land across the boundary, and 36% of the entire boundary
region; the remaining area is 14% urban, 25% forest, 12% grassland, and 13% open water.
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Figure 1. Study area in the Lower Peninsula of Michigan in United States. 

2.2. Data 

We focused on modeling the conversion of other land cover (e.g., forest, agriculture) to urban 
(Figure 2B). The output of LTM is a binary land cover change map between two times, which is either 
coded 1 (for cells converted from other land cover classes to urban class) or coded 0 (for cells 
remaining in the same land cover class). We used the NLCD in 1992 and 2001 to create the initial 
binary urbanization maps (Figure 2A). To find cells with a status of 1 and 0, we aggregated NLCDs 
at each time interval to a binary level covering urban and non-urban classes. By comparing the binary 
level map in 1992 and 2001, we created a land cover change map between two times, highlighting 
new urbanization cells in 2001 compared to 1992.  

We followed the existing literature in the United States [1,2,23,28] to select the main driving 
forces that influence urbanization in the Lower Peninsula (Figure 2C), including (1) distance to urban 
areas, (2) population density, (3) distance to primary highways, (4) distance to secondary highways, 
(5) distance to rivers, (6) distance to inland lakes, and (7) distance to the coast. Each distance raster 
was calculated using Euclidean distance in ArcGIS at 30 m × 30 m resolution. All layers were rasters 
of 25,000 rows and 25,000 columns in 1992. Within the modelling process, urban areas, roads, parks 
and water bodies in 1992 were labelled as exclusionary zones, that is, areas where no urban expansion 
would occur.  

 

Figure 1. Study area in the Lower Peninsula of Michigan in United States.

2.2. Data

We focused on modeling the conversion of other land cover (e.g., forest, agriculture) to urban
(Figure 2B). The output of LTM is a binary land cover change map between two times, which is
either coded 1 (for cells converted from other land cover classes to urban class) or coded 0 (for cells
remaining in the same land cover class). We used the NLCD in 1992 and 2001 to create the initial
binary urbanization maps (Figure 2A). To find cells with a status of 1 and 0, we aggregated NLCDs at
each time interval to a binary level covering urban and non-urban classes. By comparing the binary
level map in 1992 and 2001, we created a land cover change map between two times, highlighting new
urbanization cells in 2001 compared to 1992.

We followed the existing literature in the United States [1,2,23,28] to select the main driving
forces that influence urbanization in the Lower Peninsula (Figure 2C), including (1) distance to urban
areas; (2) population density; (3) distance to primary highways; (4) distance to secondary highways;
(5) distance to rivers; (6) distance to inland lakes; and (7) distance to the coast. Each distance raster
was calculated using Euclidean distance in ArcGIS at 30 m × 30 m resolution. All layers were rasters
of 25,000 rows and 25,000 columns in 1992. Within the modelling process, urban areas, roads, parks
and water bodies in 1992 were labelled as exclusionary zones, that is, areas where no urban expansion
would occur.



Data 2017, 2, 16 4 of 8
Data 2017, 2, 16  4 of 8 

 
 

 
Figure 2. Schematic illustrating the use of the Land Transformation Model. 

2.3. Land Transformation Model 

LTM uses ANN, which is a machine learning technique, for modelling land cover change [37,39–
41]. The multilayer perceptron is one of the well-known ANN forms that is most commonly 
employed in land cover change science [1]. The multilayer perceptron ANN consists of one input 
layer, one hidden layer and one output layer. In this study, the number of nodes set for the input and 
hidden layers was the same as the number of driving forces [36], while we used one node for the 
output layer. The output node of the ANN was coded with either 1 (for cells converted from other 
land cover classes to urban classes) or 0 (for cells remaining in same land cover class) between 1992 
and 2001. To avoid overfitting, we used a stratified random sampling approach to select 50% of the 
data for training purposes since the proportion of urban and non-urban areas was not the same. The 
multilayer perceptron was trained with the most widely utilized algorithm called back propagation 
(Figure 2B,C) to estimate ANN parameters. 

The back-propagation algorithm encompasses two phases. First, the ANN initially assigns 
random values to ANN parameters (weights and biases), then the multilayer perceptron applies 
random weights and biases to the input data in order to estimate the outputs. Second, the ANN 
calculates the mean squared error (difference between the estimated outputs and reference outputs), 
which is then propagated backward to the previous layers [40]. Optimum model parameters values 
are estimated by iterating the LTM model through many cycles. A cycle is defined as one complete 
presentation of all the training data to the ANN [28]. Within the forward and backward process, the 
error between the reference and estimated outcomes are reduced by updating the ANN parameters 
(e.g., weights and biases). The difference between mean squared errors of cycles is used as a stopping 
condition, where a training run continues until two successive mean squared error differences reach 
less than 0.05 [23]. The training run stopped after 10,000 cycles.  

Figure 2. Schematic illustrating the use of the Land Transformation Model.

2.3. Land Transformation Model

LTM uses ANN, which is a machine learning technique, for modelling land cover change [37,39–41].
The multilayer perceptron is one of the well-known ANN forms that is most commonly employed
in land cover change science [1]. The multilayer perceptron ANN consists of one input layer, one
hidden layer and one output layer. In this study, the number of nodes set for the input and hidden
layers was the same as the number of driving forces [36], while we used one node for the output
layer. The output node of the ANN was coded with either 1 (for cells converted from other land cover
classes to urban classes) or 0 (for cells remaining in same land cover class) between 1992 and 2001.
To avoid overfitting, we used a stratified random sampling approach to select 50% of the data for
training purposes since the proportion of urban and non-urban areas was not the same. The multilayer
perceptron was trained with the most widely utilized algorithm called back propagation (Figure 2B,C)
to estimate ANN parameters.

The back-propagation algorithm encompasses two phases. First, the ANN initially assigns
random values to ANN parameters (weights and biases), then the multilayer perceptron applies
random weights and biases to the input data in order to estimate the outputs. Second, the ANN
calculates the mean squared error (difference between the estimated outputs and reference outputs),
which is then propagated backward to the previous layers [40]. Optimum model parameters values
are estimated by iterating the LTM model through many cycles. A cycle is defined as one complete
presentation of all the training data to the ANN [28]. Within the forward and backward process, the
error between the reference and estimated outcomes are reduced by updating the ANN parameters
(e.g., weights and biases). The difference between mean squared errors of cycles is used as a stopping
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condition, where a training run continues until two successive mean squared error differences reach
less than 0.05 [23]. The training run stopped after 10,000 cycles.

The estimated parameters are then applied to the independent predictor variables in 1992
(Figure 2C) to calculate the likelihood of urbanization in 2001 (Figure 2D). The result of this step
is called a suitability map, where cell values vary from 0 (least likely to convert to urban) to 1 (most
likely to convert to urban) and describe the probability of urbanization [26]. While the suitability
map determines the potential for urbanization, the LTM also requires a quantity of urbanization to
convert the suitability map to a simulated binary map with values of 0, indicating non-urban, or 1,
indicating urbanization [36]. These quantities calculated as a result of comparison between the land
cover maps in 1992 and 2001 (Figure 2E). The cells in the suitability map are sorted from 1 to 0, and the
LTM converts the cells with higher suitability values to urban class until the quantity of urbanization
is met (Figure 2F).

2.4. Model Calibration

To evaluate the predictive ability of the LTM, the transformation map in 2001 was combined
with NLCD in 1992 to create a composite land cover map that was then compared to the NLCD
in 2001 (as a reference map) (Figure 2G). The performance of the LTM for modeling urbanization
was evaluated using Percent Correct Match statistics (PCM) and Relative Operating Characteristic
curves (ROC) [23,28,42]. PCM describes the proportion of the reference map where urbanization, and
no-urban, have been correctly predicted by the LTM [29]. In contrast, ROC is capable of calculating the
accuracy across a range of thresholds vary from 0 to 1 [30,40]. For each given threshold (e.g., 0, 0.1,
0.2, . . . , 0.9, 1), the suitability map was converted to a simulated urbanization map. We then compared
the simulated urbanization map with NLCD 2001 to calculate false positive (disagreements between
urban areas) rates and true positive (agreement between urban areas) rates for each threshold [1,30].
False positive rates and true positive rates are plotted along X and Y axes for each threshold. The area
under the ROC curve represents the model accuracy [43]. The calculated PCM (90%) and ROC
(85%) indicated that the accuracy of trained model was high enough to be used for future land cover
prediction [30].

2.5. Future Land Cover Projection

We then used the calibrated LTM between 1992 and 2001 to forecast urbanization from 2010
to 2050 for each 5-year interval (Figure 3). The LTM parameters linearly estimated from urban
transitions between 1992 and 2001 were applied to the predictor variables in 2001 to generate the
suitability map of urbanization in 2010. The other ingredient for forecasting urbanization was quantity
estimates of urbanized areas from 2010 to 2050. These area estimates were required to convert
continuous probabilities to the binary simulated land cover map. These values were estimated using
future population projection from U.S. Geological Survey (USGS) to estimate the future quantity of
urbanization. With area estimates for urbanization, we allocated future urban areas using the suitability
map, in the order of high to low suitability values. Urban transition cells with the highest suitabilities
were converted until the total urban quantity was satisfied. This process led to predicted land cover
maps that superimposed on NLCD 2001, resulting in a land cover map (Figure 3).
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Figure 3. Future urbanized maps for the Lower Peninsula of Michigan in United States from 2010 to 
2050 provided by the Land Transformation Model. 

3. Conclusion 

The calculated PCM (90%) and ROC (85%) indicate that the goodness-of-fit of our trained model 
was high enough to be used for future land cover prediction. The predicted land cover maps in each 
time coded either with values of 0, indicating non-urban, or 1, indicating urbanization. The predicted 
land cover maps are raster files of 25,000 rows and 25,000 columns. Table 1 shows the future urban 
areas for metropolitan regions in the Lower Peninsula of Michigan. The predicted land cover maps 
in the Lower Peninsula of Michigan can be used to assess the impact of future urbanization on climate 
change, water quality, food security and biodiversity into the future. 

Table 1. The 2011–2050 simulated areas for major metropolitan regions [km2 × 102]. 

Year Chicago Detroit Grand Rapids Kalamazoo Lansing Saginaw South 
Bend Toledo Traverse 

City 
2011 21.31 39.35 7.84 2.47 3.57 2.14 7.25 5.97 1.12 
2015 23.43 42.54 8.59 2.77 3.88 2.27 7.68 6.56 1.20 
2020 24.39 44.10 9.06 2.96 4.07 2.34 8.01 6.94 1.43 
2025 24.88 45.05 9.39 3.07 4.22 2.43 8.24 7.17 1.50 
2030 25.30 45.76 9.66 3.13 4.32 2.52 8.44 7.37 1.52 
2035 25.79 46.44 9.96 3.21 4.43 2.60 8.59 7.57 1.58 
2040 26.25 47.17 10.15 3.30 4.53 2.67 8.74 7.81 1.72 
2045 26.60 47.84 10.36 3.38 4.62 2.72 8.94 7.99 1.84 
2050 26.93 48.42 10.58 3.43 4.75 2.79 9.10 8.14 1.94 

Author Contributions: All authors contributed to writing the manuscript. Amin Tayyebi conceived the project, 
ran the LTM, and wrote the initial draft of manuscript. Samuel Smidt prepared spatial and temporal land cover 
data for modeling. This included data conversion and geographically projecting each land cover as well as 
processing predictor variables. Bryan C. Pijanowski is the owner of LTM and provided insights during the entire 
project. All authors have read and approved the final manuscript. 
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Figure 3. Future urbanized maps for the Lower Peninsula of Michigan in United States from 2010 to
2050 provided by the Land Transformation Model.

3. Conclusions

The calculated PCM (90%) and ROC (85%) indicate that the goodness-of-fit of our trained model
was high enough to be used for future land cover prediction. The predicted land cover maps in each
time coded either with values of 0, indicating non-urban, or 1, indicating urbanization. The predicted
land cover maps are raster files of 25,000 rows and 25,000 columns. Table 1 shows the future urban
areas for metropolitan regions in the Lower Peninsula of Michigan. The predicted land cover maps in
the Lower Peninsula of Michigan can be used to assess the impact of future urbanization on climate
change, water quality, food security and biodiversity into the future.

Table 1. The 2011–2050 simulated areas for major metropolitan regions [km2 × 102].

Year Chicago Detroit Grand Rapids Kalamazoo Lansing Saginaw South
Bend Toledo Traverse

City

2011 21.31 39.35 7.84 2.47 3.57 2.14 7.25 5.97 1.12
2015 23.43 42.54 8.59 2.77 3.88 2.27 7.68 6.56 1.20
2020 24.39 44.10 9.06 2.96 4.07 2.34 8.01 6.94 1.43
2025 24.88 45.05 9.39 3.07 4.22 2.43 8.24 7.17 1.50
2030 25.30 45.76 9.66 3.13 4.32 2.52 8.44 7.37 1.52
2035 25.79 46.44 9.96 3.21 4.43 2.60 8.59 7.57 1.58
2040 26.25 47.17 10.15 3.30 4.53 2.67 8.74 7.81 1.72
2045 26.60 47.84 10.36 3.38 4.62 2.72 8.94 7.99 1.84
2050 26.93 48.42 10.58 3.43 4.75 2.79 9.10 8.14 1.94
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data for modeling. This included data conversion and geographically projecting each land cover as well as
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project. All authors have read and approved the final manuscript.
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