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Forecasts of the locations of species invasions can improve by integrating species-specific climate and habitat var-
iables and the effects of other invaders into predictive models of species distribution. We developed two species
distribution models (SDMs) using a new algorithm to predict the global distributions of two nonindigenous spe-
cies, grass carp (Ctenopharyngodon idella) and Hydrilla (Hydrilla verticillata), with special attention to the North
American Great Lakes. We restricted the projected suitable habitat for these species using relevant habitat data
layers including accumulated Growing Degree Days (GDD), submersed aquatic vegetation (SAV), wetlands,
and photic zone. In addition, we restricted the grass carp niche by the projectedHydrilla niche to explore the po-
tential spatial extent for grass carp given a joint invasion scenario. SDMs showed that climate conditions in the
Great Lakes basin were often suitable for both species, with a high overlap between the areas predicted to be cli-
matologically suitable to both species. RestrictingHydrilla regions by GDD and photic zone depth showed that the
nearshore zones are primary regions for its establishment. The area of predicted habitat for grass carp increased
greatly when including Hydrilla niche as a potential habitat for this species. Integrated risk maps can provide a
means for the scientifically informed prioritization of management resources toward particular species and geo-
graphic regions.

© 2016 Published by Elsevier B.V. on behalf of International Association for Great Lakes Research.
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Introduction

Biological invasions of freshwater ecosystems cause significant im-
pacts on community structure and ecosystem function (Havel et al.,
2015). The effects of freshwater invasive species occur globally, in part
because of their ability for widespread dispersal through both natural
pathways (e.g., active or passive movement through connected water-
ways) and human-mediatedmechanisms (e.g., intentional stocking, ac-
cidental releases, hitchhiking on vessels or equipment). Often these
human-mediated vectors are associated with commercial and recrea-
tional activities. It is expected that the effects of aquatic invasive species
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will increase as human populations and associated commerce and rec-
reation also increase (Lockwood et al., 2013).

As a major center of commercial and recreational activity, the Great
Lakes Basin represents a unique confluence of nonindigenous aquatic
species (NAS) from across the globe (Rothlisberger and Lodge, 2013).
Multiple pathways of introduction of NAS to the Great Lakes include
transport on ship hulls, contamination of ballast tanks, regional overland
movement from inlandwaterbodies on recreational boats, aquariumand
horticulture trade, accidental release, or passage throughwaterway con-
nections (MacIsaac et al., 2001). As a result, the Great Lakes have been
subject to over 180 nonindigenous species establishments, some of
which have caused irreversible ecological shifts and significant economic
damages (Mills et al., 1993; Ricciardi and MacIsaac, 2000; Rothlisberger
et al., 2012). As resources to manage biological invasions are typically
scarce, there is value in understanding where NAS may establish prior
to their establishment. Further, the ability to understand how different
akes Research.
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NAS may facilitate future invasions may also provide useful information
for managers prioritizing prevention or control strategies.

A number of tools have been developed to forecast invasive species
distributions based on the concept of the environmental niche (Guisan
and Zimmermann, 2000). Termed “environmental niche model” or
“species distribution model” (hereafter referred to as SDM), these cor-
relative predictive models combine known geographic locations or oc-
currences of a species with environmental data (often climate data
such as temperature or precipitation) to predict species potential geo-
graphic distributions in novel environments (Elith and Leathwick,
2009; Hutchinson, 1958; Jiménez-Valverde et al., 2011; Pulliam,
2000). SDMs have been used in a wide range of applications such as lo-
cating rare and threatened species and habitats, predicting the spread of
invasive species, and estimating the response of species to global cli-
mate change (Guisan and Thuiller, 2005). In the Great Lakes, SDMs
have been used to anticipate invasions from the Caspian Sea
(Fitzpatrick et al., 2013), assess suitable climate conditions for an
organism in trade, grass carp (Ctenopharyngodon idella) (Wittmann et
al., 2014), and to estimate the potential range expansion of common
reed (Phragmites australis) (Carlson Mazur et al., 2014).

While SDMs are useful tools to estimate species distributions based
on climate variables, they have been criticized for the lack of the integra-
tion of species-specific habitat information in model specification
(Araújo and Peterson, 2012; Elith and Leathwick, 2009). The ability to
incorporate specific habitat information is typically not possible because
of the absence of relevant data at the appropriate spatial resolutions or
extents (Gies et al., 2015). Further, predicting which combinations of
species and habitats may facilitate or prevent biological invasions is dif-
ficult (Romanuk et al., 2009). In part, this is due to uncertainties in fore-
casting how nonindigenous species may interact with one another, and
with their environments in invaded ecosystems (Grosholz et al., 2000;
Johnson et al., 2009).

Here, we forecast biological invasions by combining an SDM algo-
rithm and a recently developed spatially explicit habitat classification
database to assess sole and joint invasion scenarios for two nonindige-
nous species that threaten the Great Lakes ecosystem, grass carp and
Hydrilla (Hydrilla verticillata). First we apply “range bagging”, a new
technique of species distribution modeling that uses only species pres-
ence data (Drake, 2015) to predict suitable climate conditions for
these species. Range bagging draws on the concept of a species' environ-
mental range and is inspired by the empirical performance of ensemble
learning algorithms (e.g., boosted regression trees) in other areas of
ecological research (Elith et al., 2008). Second, we evaluate localized
habitat suitability for each of these species using Great Lakes habitat
data layers (Wang et al., 2015) specific to the physiological limitations
of these species as found in the published literature. Finally, we investi-
gated the intersection of the restricted niches of both species to under-
stand how the predicted suitable habitat for Hydrilla might enhance
grass carp distribution.

The goal of this study was to identify potential habitat for two inva-
sive species that currently threaten the Great Lakes region. For our spe-
cific study species,Hydrilla and grass carp, we tested the following three
hypotheses for the Great Lakes region: (1) that there is suitable habitat
for the potential invasion of Hydrilla and (2) grass carp, and that (3) the
presence of Hydrilla can increase the amount of habitat in which grass
carp could persist. We propose that the incorporation of habitat specific
information in SDMs can focus management efforts on the locations
where prevention, management, and monitoring programs will be
most effective.

Methods

Study species

A number of nonindigenous aquatic species currently threaten to in-
vade the Great Lakes region (USACE, 2011). Due to their proximity to
the Great Lakes and the documented negative impacts in other systems,
grass carp (Ctenopharyngodon idella) and Hydrilla are of particular con-
cern (Langeland, 1996; Michelan et al., 2014; Wittmann et al., 2014).
Grass carp is a large cyprinid fish native to eastern Asia, with a native
range extending from northern Vietnam to the Amur River along the
Russia-China border (Fuller et al., 1999). An herbivore, it has been glob-
ally introduced for nuisance aquatic plant control and is also cultivated
in China and other countries as a food source. Despite its widespread in-
troduction and use as a biocontrol agent for nuisance aquatic macro-
phytes, there has been a great deal of uncertainty about its ecological
risk—particularly in the Great Lakes Region (Wittmann et al., 2014).
Currently, both diploid and triploid grass carp remain widely available
for stocking in the U.S., and feral, reproducing populations have been re-
ported in the Illinois and Mississippi Rivers (Raibley et al., 1995), Lake
Erie, and some tributaries of Lake Erie and Lake Michigan (Chapman
et al., 2013; Wittmann et al., 2014).

Hydrilla is a submersed aquatic macrophyte native to central Asia
and Australia (Cook and Lüönd, 1982). Hydrilla was first detected in
Florida in the 1960s (Steward et al., 1984) and is now considered inva-
sive and naturalized in the United States as well as much of temperate
North America. Introduced populations also occur in Central and
South America, Africa, Europe, and New Zealand (Langeland, 1996).
Hydrilla often has unwanted impacts such as impeding water convey-
ance, impairment of recreation activities, displacement of native plants,
and alteration of nearshore community structure (Gordon, 1998;
Langeland, 1996). The monoecious form of Hydrilla has been found in
waterways with a direct connection to the Great Lakes in New York
and Ohio as recently as 2012 (Jacono et al., 2014). The Great Lakes has
experienced a number of native aquaticmacrophyte declines of ecologic
and cultural importance, including wild celery (Vallisneria americana)
and Wild rice (Zizania palustrus) (Schloesser and Manny, 2007;
Sierszen et al., 2012). Concern about sensitive wetland species like
these in the Great Lakes continues to increase as Hydrilla is discovered
in adjacent watersheds because studies have shown that Hydrilla can
competitively exclude these and other native aquatic macrophytes
when they are co-located (Chadwell and Engelhardt, 2008; Langeland,
1996; Rybicki and Carter, 2002). Due in part to its life history, Hydrilla
is extremely difficult to eradicate (Rejmánek and Pitcairn, 2002). Grass
carp prefersHydrilla as a food source, and is commonly used as a biocon-
trol agent forHydrilla in the southernUS, Texas and other regionswhere
the plant is a nuisance (Chilton et al., 2008; Pine and Anderson, 1991;
Shireman and Maceina, 1981).

Species distribution model

We predicted regions of suitable climate conditions for grass carp
and Hydrilla by estimating statistical relationships between a widely-
used set of global climate variables and species occurrence records
using a new SDM method called “range bagging” (Drake, 2015). Range
bagging is a form of boundary estimation, considering the limits of the
environmental space where a species can persist. The range bagging al-
gorithm efficiently estimates the range limits in a multi-dimensional
space of environmental variables using bootstrap aggregation. By re-
peatedly defining the convex hull of occupied environments in 2 of n di-
mensions at a time it is possible to determine how often a given
environment occurs inside these niche boundaries. The resulting mea-
sure, called “niche centrality”, refers to the proportion of times an envi-
ronment occurs within the environmental range of a species across the
bootstrapped combinations of environmental variables. Range bagging
compares well to other species distribution models in traditional SDM
contexts (Drake, 2015) and for invasive species (Cope et al., in review)
with the distinct advantages of not requiring pseudo-absence points
for fitting and having an ecologically relevant interpretation (Drake,
2015; Cope et al., in review).

The range bagging models were trained on a random partition of
80% of the occurrence data. Performance was reported as the area
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under the ROC (receiver operating characteristic) curve, which is re-
ferred to as AUC, or “Area Under Curve” (Hanley and McNeil, 1982) on
the remaining test data and an equal-sized set of randomly selected
pseudo-absences (e.g., background localities to be used for model pa-
rameterization). The pseudo-absence points were taken from a
2000 km buffer around the presence points. Such use of background
points is common practice for data that only contain occurrence records
(Elith and Leathwick, 2009). As a complementary measure of perfor-
mance, we estimated the continuous Boyce index (Hirzel et al., 2006;
Petitpierre et al., 2012) that is designed for presence-only data using
the R package “ecospat”. The Boyce index varies from −1 to 1 with
values greater than zero indicating agreement between the predictions
and the presences in the test data (Hirzel et al., 2006). This was calculat-
ed alongside the AUC, with both metrics using the same model output
and data for each run of the model. We assessed the variance in
model performance by performing 10-fold cross-validation on the
training data (Table S1). Further, we estimated the transferability of
themodel by conducting 5-fold cross-validation on data that was divid-
ed into longitudinal bins (Wenger and Olden, 2012). This test measures
the ability of the model to predict occurrence in distinct geographical
areas, with longitudinal bins being appropriate for sampling the occur-
rence of these species on multiple continents.

The niche centrality for each species was estimated as the fraction of
times climate conditions were captured within the range of the ob-
served occurrences. We also provided estimates of variable importance
for each species. The importance of candidate predictor variables was
measured by permuting each variable in sequence and calculating the
average reduction in accuracy (as measured by changes in AUC, see
Electronic Supplementary Material (ESM) Figs. S1, S4), across 500 per-
mutations. The marginal effect of each variable on model performance
Fig. 1.Global occurrences (n=1017) ofHydrilla verticillata (a; top panel) and niche centrality ba
of an environment to be within the environmental range of a species across multiple environm
was then plotted by varying the predictor of interest while holding
other variables at their median value (See ESM Figs. S3, S6).

Grass carp and Hydrilla occurrence records and environmental climate
variables

Global grass carp and Hydrilla locality information (i.e., positive oc-
currence) used in the range bagging model was obtained from the pri-
mary literature and published databases accessed in December 2014
from the Global Biodiversity Information Facility (GBIF; gbif.org),
Fishbase (fishbase.org), and United States Geological Survey (USGS;
usgs.nas.gov) databases. Overall, 663 grass carp and 1017 Hydrilla oc-
currence records were collected and these were globally distributed
on all continents except Antarctica, South America and Australia
(grass carp only) (Figs. 1, 3). grass carp and Hydrilla occurrence records
were collected between 1934 and 2014 and 1953–2014, respectively.
Each georeferenced position was verified, and all localities with an un-
certainty of position (e.g., a place described as “China” rather than a par-
ticular river reach or other waterbody location) larger than 50 kmwere
removed to improve the accuracy of the model predictions.

The environmental climate variable dataset used in the range bag-
ging model was comprised of 19 environmental climate variables
(Hijmans et al., 2005; worldclim.org). These climate variables, in turn,
are derived fromglobalmaps of temperature (n=11) and precipitation
(n=8) interpolated fromobserved data (representative of 1950–2000)
(seeHijmans et al., 2005 for a full description of thedata used to compile
the climate variable data) and have been used to previously represent
current climate in species distribution modeling due to fine spatial res-
olution and global coverage (Hijmans et al., 2005). Specifically, the 11
climate variables that concern temperature include annual mean
sed on global occurrence records (b; bottompanel). Niche centrality refers to the tendency
ental variables.

http://gbif.org
http://fishbase.org
http://nas.gov
http://worldclim.org
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temperature, mean diurnal range, isothermality, temperature seasonal-
ity, maximum temperature of the warmest month, minimum tempera-
ture of the coldest month, temperature annual range, mean
temperature of the wettest quarter, mean temperature of the driest
quarter, mean temperature of the warmest quarter, and mean temper-
ature of the coldest quarter. The 8 climate variables that concern precip-
itation are annual precipitation, precipitation of the wettest month,
precipitation of the driest month, precipitation seasonality, precipita-
tion of the wettest quarter, driest quarter, warmest quarter, and coldest
quarter. The data used was the standard download available from
WorldClim, specifically we used the R package ‘dismo’ to access the
data.

WorldClim and similar climate data have been shown to be relevant
to construction of abiotic niche space (Araújo and Peterson, 2012). In
past studies, both large-scale temperature and precipitation climate
variables (e.g., WorldClim data) have been used as proxies for local
aquatic variables and to model stream fish distributions and several
studies suggest that models built using macroscale variables perform
similar to models based on local variables for aquatic species distribu-
tions (Frederico et al., 2014; Porter et al., 2000; Watson and Hillman,
1997). Population establishment and growth rate of grass carp (and
other aquatic and terrestrial species) have been shown to change with
habitat suitability measures derived from environmental niche models
developed this collection of climate variables (Wittmann et al., 2016).
We also included the full suite of variables to develop habitat suitability
predictions for Hydrilla, noting that average annual temperature, aver-
agemonthly temperature, diurnal temperature regime, andwater avail-
ability have previously been used to model Hydrilla fitness, growth and
establishment (Gu, 2006; Langeland, 1996; Rybicki and Carter, 2002;
Spencer et al., 2000; Sutton, 1996; Zhang et al., 2013). Accordingly, it
seems plausible that the full set of variables would be appropriate for
consideration in this application given the potential effects of both tem-
perature and precipitation on littoral zone conditions (e.g., where grass
carp and Hydrilla will occur) and other hydrologic regimes (flow, tur-
bidity, water temperature) in the Great Lakes ecosystem. See ESM Ap-
pendix S1 for a detailed description of each environmental climate
variable, variable rescaling methodologies, and steps taken to reduce
bias in model fitting.

Habitat-specific evaluation

We used Great Lakes habitat data layers taken from the Great Lakes
Aquatic Habitat Framework (GLAHF; http://glahf.org/; Wang et al.,
2015) benthic growing degree days, wetland habitat) and theMichigan
Tech Research Institute (submersed aquatic vegetation, photic zone) to
create spatial data layers which were used to restrict the species distri-
butionmodel outputs to suitable habitats in the Great Lakes region after
converting all layers to a common projection and cell size. Species-spe-
cific information on environmental limits to occurrence, survival, and
spawningwas collected from extensive reviewof the primary literature.
This included published limits of measured environmental variables,
such as temperature, growing degree days, substrate type preference,
and water chemistry. Cases for which reliable Great Lakes-wide data
were unavailable were discarded (e.g., primarily substrate type or
water quality data). When literature sources differed in their reported
limits, the extrema from the set of values were considered to be the
limit. These environmental conditions were then used to restrict the
projected range bagging model to the suitable areas of the Great Lakes
for each species.

To identify local (non-climatological) restriction to Hydrilla and
grass carp distribution we used several variables to identify Great
Lakes regions likely to provide suitable habitat for these species based
on location specific information. To restrict the Hydrilla model, we
used a measure of heat accumulation, or the number of accumulated
growing degree days (GDD; n ≥ 500), to determine regions of the
Great Lakes that would allow a 50% sprouting rate of axillary turions
formed by monoecious Hydrilla plants (after Spencer et al., 2000). We
also restricted the Hydrillamodel by depth of the euphotic zone to rep-
resent the limitation of water transparency and the maximum depth of
Hydrilla colonization within a lake (Canfield and Langeland, 1985).

To restrict the grass carp model, we used a combined data layer rep-
resentative of submersed aquatic vegetation (SAV) andwetland regions
of theGreat Lakes. Grass carp reproduction is largely based on processes
that occur in riverine habitats, namely water velocity, flow regime and
temperature (Shireman and Smith, 1983; Stanley et al., 1978). Adjacent
tributaries to the Great Lakes appear to have suitable thermal and hy-
drologic conditions for successful recruitment and habitation
(Chapman et al., 2013; Kocovsky et al., 2012). Thus, we sought to delin-
eate the distribution of this species by SAV and coastal wetland layers in
part because of its likelihood for direct utilization of these habitats as a
food resource and refuge. Through literature review, we found that
the thermal conditions in the Great Lakes were suitable for grass carp
physiology and could not designate any other Great Lakes specific hab-
itat variables bywhich to restrict grass carp habitat by.We also created a
second assessment of the grass carp niche by restricting the Great Lakes
region projection to a combined SAV, wetland, and projected Hydrilla
(including GDD and photic zone restriction) data layer.

Great Lakes habitat variables

Growing degree day (GDD) datawere calculated using benthic tem-
perature data (available in the GLAHF database) derived from theNOAA
Great Lakes Coastal Forecasting System's (GLCFS) vertical temperature
models (NOAA-GLERL, 2013). The GLCFS employs a 3D hydrodynamic
model (Beletsky et al., 2013; Chu et al., 2011; Schwab and Bedford,
1994) with a horizontal resolution ranging from 2 km (Lakes Erie,
Huron and Michigan) to 5 km (Lake Ontario) to 10 km (Lake Superior)
to determine lake temperatures (among other physical variables) at 20
vertical levels in all lakes except Lake Erie, which has 21 levels. Benthic
temperature was derived using the bottom layer of the hydrodynamic
model. Benthic GDD was computed using a lower bound of 8 °C based
on requirements of Hydrilla (Barko and Smart, 1986; Spencer et al.,
2000) and was calculated separately for each of the Great Lakes using
the formula, GDD = Tavg − Tbase, when Tavg ≥ Tbase. Data for all five
lakes (with the exception of Lake St. Clair for which data were not avail-
able) were combined by year using a mosaic process in ArcGIS Version
10.2 with an output cell size of 2000 m. We then computed an average
value for each grid cell using the years 2006–2012.

Great Lakes euphotic zone depth (z1%), or the depthwhere only 1% of
the surface photosynthetic available radiation (PAR) remains, was cal-
culated directly from the diffuse attenuation coefficient for
downwelling irradiance at 490 nm (Kd_490), in m−1 (NASA, 2015).
This algorithm was evaluated using an empirical relationship derived
from in situ measurements of Kd_490 and blue-to-green band ratios
of remote sensing reflectances near 490 nm and between 547 and
565 nm. PAR data have been validated through comparisons between
two satellite systems (MODIS and SeaWiFS PAR) and in situ PAR at
three Great Lakes locations (Chatham in Lake Superior, Muskegon in
Lake Michigan, and Gaylord in Lake Huron) (Yousef et al., 2016).

Wetland data were compiled by the Great Lakes Coastal Wetland
Inventory (GLCWC, 2004). This inventory utilized themost comprehen-
sive coastal wetlands data available for the Great Lakes and connecting
channels and was derived from multiple sources. Additional informa-
tion about these data can be found at http://glc.org/projects/habitat/
coastal-wetlands/cwc-inventory/. Coastal wetlands polygonal data
were rasterized for use with a cell size of 30 m.

Submerged aquatic vegetation (SAV) data were produced and pro-
vided by the Michigan Tech Research Institute (Brooks et al., 2015;
MTRI, 2012; Shuchman et al., 2013). The data have a 30 m resolution
and represent the extent of SAV in the optically shallow areas of lakes
Huron, Michigan, Erie, and Ontario. The data were generated using an
MTRI-developed, depth-invariant algorithm applied to Landsat satellite

http://glahf.org/;
http://glc.org/projects/habitat/coastal-wetlands/cwc-inventory/
http://glc.org/projects/habitat/coastal-wetlands/cwc-inventory/
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data. The satellite data were collected during the vegetative growing
season during various year ranges. Specifically, vegetative growing sea-
sons were determined by temperature and years varied by lake; Lake
Erie, May–September 2006–2011; Lake Huron, March–September
2007–2011; Lake Michigan, April–May 2008–2011; Lake Ontario,
April–September 2008–2011. Some portions of these lakes could not
be classified due to high turbidity (Shuchman et al., 2013). SAV data
did not exist or were not available for Southern Green Bay and Lake
Superior and thus were excluded from the SAV restriction for grass
carp. Data for the remaining four lakeswere combined using the "Mosa-
ic to New Raster" tool in ArcToolbox in ESRI ArcGIS Desktop Version
10.2 (ESRI, 2014) with a cell size of 30 m. We utilized classes 1 (light
submerged aquatic vegetation) and 7 (dense submerged aquatic vege-
tation). More information about the SAV data can be found at http://
mtri.org/cladophora.html.

Each of these Great Lakes habitat layers was first re-projected and
resampled to match the projection and cell size of the model, i.e., the
geographic coordinate system (WGS84) with a cell size of
0.000833 × 0.000833 degrees (approximately 65 × 93 m). Model re-
strictions were performed using the habitat layers as a ‘mask’ within
ArcGIS's Raster ToolBox to limit the model to the spatial areas defined
by the physiological parameters as determined though the literature re-
view described above.

Results

Hydrilla (n = 1017) has been observed on all continents except
Antarctica; however most observations occurred outside of its native
range (i.e., the Indian subcontinent and regions of Korea; (Jacono et
al., 2014) (Fig. 1a). Niche centrality of Hydrilla was generally N0.5
worldwide, indicating that its environmental tolerances are wide
enough that most of the global land mass is contained within its esti-
mated climate niche. Most suitable habitats for Hydrillawere identified
in North America south of Canada, South America, Europe, Southern Af-
rica, Australia, and in eastern Asia (Fig. 1b). The model demonstrated
considerable predictive accuracy (AUC = 0.922, ESM Fig. S1, Boyce
index= 0.785), and mean diurnal temperature range and precipitation
of the warmest quarter were the two most important predictor vari-
ables (Table 1, ESM Fig. S2). Results from the random cross-validation
and spatial cross-validation support the predictive value of this model
(ESM Table S1).

Overall, niche centrality, or suitable climate condition that falls in-
side the ecological niche, for Hydrilla in the Great Lakes was generally
high (N0.8) for 86% of the basin (Fig. 2a). Clipping the niche centrality
for the Great Lakes by GDD indicates that most of the shallow habitats
of Lakes Michigan, Huron and Ontario may provide suitable habitat for
axillary turion growth of this species. When restricted only by GDD, al-
most the entirety of Lake Erie has the potential for Hydrilla establish-
ment, and in contrast, Lake Superior generally cannot support axillary
Table 1
Summary table for range bagging species distribution model outputs and restriction variables
Curve evaluation and Bioclim variables of greatest importance included in columns 3 and 4. Colu
Columns 6 and 7 indicate the habitat data layers used to restrict the niche predictions for each

Species Records
(N)

AUC Bioclim variables of
greatest importance

Relative importance of bio
variable (Proportion)

Hydrilla (H.
verticillata)

1017 0.896 Mean diurnal temp 0.06
Isothermality 0.06
Precip of warmest quarter 0.10

Grass Carp (C.
idella)

663 0.877 Mean temp of wettest
quarter

0.14

Mean temp of driest
quarter

0.09

Mean temp of warmest
quarter

0.09

Precip of driest quarter 0.07
turion growth of Hydrilla due to its benthic thermal profile (Fig. 2b).
However, incorporating photic zonewith the GDD restriction decreased
the amount of suitable Hydrilla habitat by 62% relative to the GDD clip,
and Hydrilla is predicted to occur only along the southerly shorelines
of Michigan and Huron, and in western and central Lake Erie (Fig. 2c).

Similar toHydrilla, grass carp occurrences (n= 663) were distribut-
ed on six continents (except Antarctica), and most observations oc-
curred outside of the native range (i.e., Eastern Asia) (Fig. 3a). There
was considerable overlap in predicted suitable climate for grass carp
and Hydrilla, with high niche centrality for grass carp occurring in
most regions of North and South America, Europe, Southern Africa,
and Australia (Fig. 3b), although to a lesser extent than Hydrilla
(Fig. 1b). The model demonstrated considerable predictive accuracy
(AUC = 0.877, ESM Fig. S4, Boyce index = 0.79). The mean tempera-
tures of the wettest, driest, and warmest quarters and the precipitation
of the driest quarter were the four most important predictor variables
(Table 1, ESM Fig. S5). Results from the random cross-validation and
spatial cross-validation show similar predictive performance as for
Hydrilla (ESM Table S1).

Most of the Great Lakes region had a high niche centrality (N0.8), in-
dicating suitable climate conditions for grass carp (Fig. 4a). However,
when restricted by SAV and wetland layers, suitable habitat was re-
duced by 98% (Fig. 4b). The inclusion of predicted Hydrilla niche greatly
increased (+633%) the amount of estimated available suitable habitat
for grass carp, relative to the SAV and wetland layer, in the Great
Lakes (Fig. 4c).
Discussion

Our study predicted regions of suitable climate and habitat for two
NAS that currently threaten the Great Lakes. We also estimated the spa-
tial extent of a potential joint invasion of these species. Species distribu-
tion model outputs predicted suitable climate conditions within the
ecological niche for both species on all continents (excluding Antarcti-
ca). Further, in agreement with previously published SDMs for grass
carp and Hydrilla (Barnes et al., 2014; DeVaney et al., 2009; Herborg et
al., 2007; Wittmann et al., 2014), most regions of the Great Lakes were
estimated to contain highly suitable climate conditions, with significant
spatial overlap of these conditions in all five lakes. By restricting SDM
projections with Great Lakes specific habitat layers, we were able to re-
fine the spatial distribution of environments that pose the highest es-
tablishment likelihood given each species' physiological limitations. By
combining these predictions with information on the potential for in-
troduction, likelihood of impacts, and secondary spread, natural re-
source managers may better identify potential hotspots for NAS
establishment, develop strategies to prevent new introductions, and
prioritize sites for surveillance, containment, or control (Vander
Zanden and Olden, 2008).
. Two species were modeled using global occurrences (2nd column). AUC = Area Under
mn5 indicates the relative importance of each Bioclim variable for each species prediction.
species, and associated literature references used to motivate the restriction layer.

clim Great Lakes niche restriction scenarios Reference supporting
restriction variable

(1) Accumulated growing degree days
(n = 500)

Spencer et al. (2000)

(2) Accumulated growing degree
days + Photic zone

Canfield and Langeland
(1985)

(1) Submersed aquatic
Vegetation + Wetlands

Nixon and Miller (1978)

(2) Submersed aquatic
Vegetation + Wetlands + Hydrilla
Niche

Bain (1993)

Cudmore et al. (2004)

http://mtri.org/cladophora.html
http://mtri.org/cladophora.html


Fig. 2. Niche centrality for Hydrilla verticillata for the comprehensive Great Lakes watershed region (a; top panel) and clipped using accumulated growing degree days (GDD) based on
benthic temperature observations (b; middle panel), and clipped using GDD and photic zone (c; bottom panel). High values of niche centrality indicate climate conditions in the Great
Lakes basin fall generally within the predicted niche.
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While the range bagging SDMs predicted that most of the Great
Lakes contain suitable climate conditions to support our study organ-
isms, the restricted models indicated that Hydrilla and grass carp habi-
tats would occur primarily in the southerly nearshore zones of lakes
Michigan and Huron and in the western and central basins of Lake
Erie. That these predicted regions occurred generally in the littoral
zone was largely driven by photic zone depth and temperature (e.g.,
GDD) limitations of Hydrilla and other SAV. Subsequently, these SAV
limits determined the potential suitable habitat for grass carp, which
we discuss the details of this interaction in greater detail below. These
limiting factors are dynamic variables, often owing to anthropogenic
impacts such as climate change, land-use change, and the establishment
of other invasive species (Gronewold et al., 2013; Trumpickas et al.,
2009; Vanderploeg et al., 2010;Wiley et al., 2010). As these drivers con-
tinue to change, and the availability of effective mitigation options may
also develop, there could be expansion or contraction of the nearshore



Fig. 3. Global occurrences (n = 663) of grass carp (Ctenopharyngodon idella) (a; top panel) and niche centrality based on global occurrence records (b; bottom panel). Niche centrality
refers to the tendency of an environment to be within the environmental range of a species across multiple environmental variables.
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ranges of these species. The dynamic nature of environmental
change—including novel species interactions—emphasizes the need
for iterative risk assessment and the value of long-term datasets to in-
form and update modeling efforts such as those presented here.

Hownonindigenous speciesmay interactwith one another in invad-
ed ecosystems has been difficult to predict (Grosholz et al., 2000). This
difficulty can be attributed to the variable andhard-to-predict outcomes
of species interactions (Cope and Winterbourn, 2004; Johnson et al.,
2009; Michelan et al., 2014). We explored the possibility of the estab-
lishment of Hydrilla influencing the distribution of grass carp. Relative
to model predictions without Hydrilla, grass carp range increased due
to the assumed presence ofHydrilla.WhileHydrilla is known to be a pre-
ferred food source for grass carp (Shireman and Smith, 1983), the spe-
cific interaction between these two species, should they become
established within the lakes, is uncertain and highly dependent on the
unique characteristics of the ecosystems in which they may co-exist.
For example, the ecosystem effects when grass carp occurs in the
same environment as Hydrilla vary based on the population densities
of both species, community composition, and ecosystem type and size
(e.g., small ponds versus large reservoir systems) (Bain, 1993; Chilton
et al., 2008; Dibble and Kovalenko, 2009; Noble et al., 1986).

Our modeling effort may have over- or underestimated potential
distributions of Hydrilla and grass carp in Great Lakes habitats. Uncer-
tainties or absence of available habitat data at appropriate spatial scales
may have impacted the amount of predicted grass carp or Hydrilla hab-
itat. For example, limitations associated with the satellite-derived SAV
data, such as maximum optical depth, which ranges from 7 m for Lake
Erie to N20 m for Lake Michigan (no data were available for Lake Supe-
rior), might cause underestimation of the true distribution of vegetation
in the basin (Ashraf et al., 2010). Additionally, nearshore areas known to
have extensive macrophyte beds include southern Green Bay (Albert
and Minc, 2004); however to our knowledge, no spatial data layers for
SAV were available for this area. The absence of these SAV data suggest
an underestimation of potential grass carp habitat in this, and possibly
other areas.

We used the range bagging methodology in this study for four rea-
sons. First, because range bagging estimates the environmental limits
of species habitat, it more closely matches the concept of the ecological
niche (Drake, 2015). As a result, its consideration of boundaries rather
than the central tendency may offer a more conservative (i.e., broader)
niche relevant for invasive species risk assessment, while also assisting
with interpretability. Second, range bagging uses only presence points
for model fitting, removing the need for selecting a suitable area from
which to sample background points. Third, range bagging is shown to
perform as well as widely used alternatives, such as MaxEnt and
boosted regression trees on validation data sets and aquatic invasive
species, including the two considered here (Drake, 2015; Elith et al.,
2011; Kramer et al., in review; Cope et al., in review). To support this,
we showed that range bagging provided informative predictions even
when conducted on spatially-segregated partitions of the data, indicat-
ing transferability (Wenger and Olden, 2012). Fourth, range bagging is
computationally feasible even when the number of environmental di-
mensions is large (Drake, 2015).

The implementation of habitat data layers in conjunctionwith range
bagging, or any SDMalgorithm, is not always straightforward, especially
as environmental tolerances, habitat requirements and species interac-
tions are usually poorly documented (Kilroy et al., 2008). Observations
of spatial or physical limitations, such as maximum or minimum
depth distribution of a species within a water column are not necessar-
ily representative of the limitation for that species' distribution. This



Fig. 4.Niche centrality for grass carp for the comprehensive Great Lakeswatershed region (a; top panel) and clipped using a submersed aquatic vegetation (SAV) and wetlands data layer
(b; middle panel) and a combined SAV, Wetlands and predicted Hydrilla verticillata niche (c; bottom panel). High values of niche centrality indicate climate conditions in the Great Lakes
basin fall generally within the predicted niche.
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type of information may be misleading without a fuller understanding
of what mechanisms related to depth truly limit species establishment.
As such,we did not restrictHydrilla distribution by observations ofmax-
imum depth from the literature, because the information relating depth
to survival in the field was not available. However, we believe it
appropriate to utilize the known relationship between light extinction
and Hydrilla survival because it captures the mechanism by which
depth may be a limiting factor. Future efforts could include using
correlative studies such as those presented in Gallardo and Aldridge
(2013), to better understand the relationship between habitat and spe-
cies occurrence.

One way to potentially further improve upon range bagging is
through thedirect integration of experimental physiological data, rather
than the model restrictions we utilized in this analyses. Incorporating a
prior probability on the minimum or maximum conditions for survival
within the range bagging algorithm would be particularly useful in
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cases where a species is suspected of not reaching the extents of its en-
vironmental tolerances for contingent biogeographic or ecological rea-
sons (e.g. an invasive species not at equilibrium with its expected
range). Further, the synergistic effects of these complex interactions
are likely key variables in the prediction of sustained populations. The
understanding of these relationshipsmay be further complicated by po-
tential temporal mismatches between species occurrence records and
climatological data used as environmental input variables for SDMs.
Herein, for example, the climatological data were collected from 1950
to 2000, and the habitat-specific data were collected after 2005. Argu-
ably, there may be significant differences between the climatological
data after 2005, thus affecting the relationship between SDM outputs
for grass carp and Hydrilla, and the habitat-specific data used to restrict
the predicted ranges.

Management implications and conclusions

The methods developed in this study may provide a strategy for de-
riving a scientifically-informed prioritization of Great Lakes regions for
themanagement of existing and future invasions of NAS. The integrated
approach presented here relies upon the development and availability
of high resolution and broadly scaled habitat data layers that can be ap-
plied to assess the ecological risk of NAS or the potential habitat for na-
tive species. By combining species-relevant habitat layers with SDM
predictions, we sought to develop a useful scientific result for managers
whomay not only have interest inHydrilla and grass carp establishment
in the Great Lakes, but also have an interest in analyses that can be used
to form the basis for surveillance or control programs of other NAS.
Combining habitat data layers with SDMs not only reduces the uncer-
tainty about where NAS may establish, but these types of multi-species
analyses also serve to identify vulnerable regions of the Great Lakes. Im-
portant next steps can include: (1) utilizing habitat layers and known
species occurrences to determine and quantify the relationships be-
tween them, and (2) taking advantage of existing information (e.g.,
physiological limitations, occurrences, predictive models based on cli-
mate matching) on NAS, particularly those established in adjacent wa-
tersheds, to explore the potential consequences of not just one, but
multiple invasions.
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