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Ocean color satellite-derived estimates of water properties are generally discontinuous in spatial and temporal
coverage due to cloud cover. We describe a novel method for providing an estimate of continuous distribution
of a satellite-derived water property, chlorophyll concentration in Lake Superior. The method uses calculated
wind-driven lake circulation froma hydrodynamicmodel to estimate the evolution of the chlorophyll concentra-
tion field between available imagery. This new technique considers hydrodynamic effects by integrating a prop-
erty-carrying particle model (PCPM) and an Eulerian concentration remapping approach. The PCPM
interpolation method uses computational tracer particles that move with the calculated lake currents to repre-
sent the chlorophyll field. The concentration associated with each particle is dynamically adjusted toward the
satellite-derived chlorophyll field at times and locations where imagery is available and produces a spatially
and temporally continuous estimate of the chlorophyll concentration field. One of the important characteristics
revealed from the analysis is the seasonally-dependent and region-specific chlorophyll concentration, which is
significantly controlled by seasonal hydrodynamic conditions in Lake Superior. Analysis suggests that without
adding extra sampling cost, moving a few sampling locations from offshore water to sample the embayments
and southern coasts can provide more accurate characterization of the spatial pattern of chlorophyll concentra-
tion in Lake Superior. Furthermore, we found that Lake Superior chlorophyll concentrations do not appear to
have changed significantly over the past 12 years and likely only slightly or not at all over the last 50 years,
which differs from that in the other upper Great Lakes.
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Introduction

In large ecosystems such as the Laurentian Great Lakes, field mea-
surements of water quality parameters are generally extremely limited
in terms of temporal and spatial coverage (e.g., Scavia et al., 1986;
Lehman, 1988; Makarewicz and Bertram, 1991; Johengen et al., 1994).
For example, in Lake Superior with over 31,000 miles2 of surface area,
water quality trends are typically assessed by sampling 18 stations
twice per year (April and August, GLNPO/EPA). Recently, to improve
on the obvious temporal limitations of limited field sampling, remote
sensing has been used to determine lake-wide trends in water quality
parameters such as chlorophyll a (Barbiero et al., 2011; Warner and
Lesht, 2015; Fahnenstiel et al., 2016). However, remote sensing of key
parameters is not without limitations. Because satellite remote sensing
es Research. Published by Elsevier B
depends on clear skies in regions such as the Great Lakes where cloudy
conditions can dominate during certain periods, only limited remote
sensing observations are possible. For example, for the period of No-
vember 1, 2007 through March 31, 2008, a period of 5 months, not
one ‘clear’ remote sensing image (defined as 75% over lake coverage)
was observed in Lake Superior. Thus, although remote sensing has
allowed for increased spatial sampling of water quality parameters, its
limited ability to provide resolution on important temporal scales may
diminish its application.

But, application of statistical or interpolation techniques may pro-
vide improved remote sensing products. In the Great Lakes there has
previously been demonstrated success using traditional spatio-tempo-
ral interpolation techniques for satellite-derived images of surface
water temperature as demonstrated by the Great Lakes Surface Envi-
ronmental Analysis (GLSEA) product (Schwab et al., 1999). While this
technique has proven to be extremely useful for some physical fields
like temperature, we found that it was inadequate for biogeochemical
.V. All rights reserved.
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fields with higher degrees of spatio-temporal variability than surface
water temperature. Other approaches need to be explored to improve
the resolution of remotely sensed biogeochemical properties.

In this paper, we will introduce a new data assimilation technique,
which combines remote sensing information with information about
water movement from hydrodynamic models. There have been consid-
erable advances in hydrodynamic modeling of coastal waters, to the
point where accurate depictions of short-term and seasonal circulation
patterns are routinely available. Since 2002, Lake Superior has been part
of the National Oceanic and Atmospheric Administration's (NOAA) op-
erational Great Lakes Coastal Forecasting System (GLCFS), which is
built on a version of the Princeton Ocean Model (POM) for each of the
Great Lakes (Schwab and Bedford, 1994). Since the development of
GLCFS, there have been continuous advances in hydrodynamic model-
ing for Lake Superior (Bennington et al., 2010; White et al., 2012;
Dupont et al., 2012; Xue et al., 2015) along with the other four Lakes.
More recently, the unstructured grid Finite Volume Community Ocean
Model (FVCOM) has been applied to the Great Lakes (Anderson and
Schwab, 2013; Xue et al., 2015;Xue et al., 2017).With its promisingper-
formance, the FVCOMmodel is currently being used by NOAA for oper-
ational forecasting in several coastal regions and is scheduled to replace
the Princeton Ocean Model in NOAA's GLCFS.

The motivation for the current study is to provide improved spatial
and temporal coverage for remotely-sensed estimates of water quality
parameters in a large ecosystem using a new combined hydrodynamic
modeling/remote sensing approach. This new approach is critical be-
cause it provides a complete spatial and temporal remote sensing prod-
uct overcoming many previous observational limitations. For example,
in order to validate remote sensing algorithms for an increasingly com-
plex array of biogeophysical parameters, it is becomingmore important
to generate values of the satellite-derived parameters for locations and
times when ground truth is available, but satellite imagery may not be
available. The interpolated parameter values can provide a valuable
supplement to the relatively rare coincident ground truth/remote sens-
ing data. Moreover, there is considerable value to a continuous spatio-
temporal approximation of a satellite-derived biogeophysical parame-
ter in terms of the types of geospatial analysis that can be utilized.
One example is the decorrelation time analysis described later in this
paper. Another advantage of the continuous fields is the ability to gen-
erate continuous parameter time series at any location in the field, as
well as continuous time series of complete spatial averages. Finally, con-
tinuous spatio-temporal estimates of biogeochemical parameters will
also be useful for examining biological processes with much greater
spatial and temporal resolution compared to in situ measurements at
sampling stations and intermittent and incomplete satellite imagery re-
cords. And, as improvements are made in coupled models of lake phys-
ics and ecology, continuous parameter fields will be increasingly useful
for calibration, validation, and assimilation of future products.

There are typically two distinct approaches used to obtain estimates
of a continuous spatio-temporal parameter field from incomplete data,
which are based respectively on Eulerian and Lagrangian models. The
first approach is to use a soluble tracer-basedmodel to represent trans-
port and mixing in a Eulerian framework, such that the tracer concen-
tration field (C) is calculated using the mass conservation equation:
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where D is the total water depth, u,v, and w are the x, y and z compo-
nents of the water velocity, Kh is the vertical thermal diffusion coeffi-
cient, Fc is the horizontal diffusion term, and Csource and Csink
represents the sources and sinks of C. This approach has been widely
used in ocean modeling communities (Chen et al., 2008; Xue et al.,
2009). Such a tracer-based model usually uses the same numerical ap-
proach as is used for the salinity equation in hydrodynamic models
with the addition of source and sink terms. The tracer-based model
requires its model grid to match the hydrodynamic model grid (other-
wise excessive interpolations for each grid and each time step are re-
quired and often significant interpolation-induced errors would
occur). Such a requirement often means different hydrodynamic
models come alongwith their own version of the tracer model, and dif-
ferent configurations of the tracer model will be required even in order
to match different hydrodynamic model configurations.

The second approach,whichwe adopted here, is based on a Lagrang-
ianparticle-trackingmodel. Lagrangianmodels follow the trajectories of
discrete tracer particles, as they are tranported by the currents. Com-
monly the tracer particles represent discrete units of mass and the con-
centration field is proportional to their local spatial density. What is
unique in our approach is that we have developed a property-carrying
particlemodel (PCPM, details described in the next section) thatwill es-
timate the domain properties (in this case, the chlorophyll concentra-
tion) using the particle-tracking trajectories generated from a
traditional Lagrangian particle-tracking model, but with a time-varying
concentration value associated with individual particles. The advan-
tages of this approach is the simplicity of code construction, the efficien-
cy of computation and freedom of model configuration as our model is
constructed in away that completely independent of the hydrodynamic
model configuration and particle-tracking models. This shall be eluci-
dated in the full description of the PCPM in the next section.

Methods

MODIS Ocean Color data

This study uses the Color Producing Agents Algorithm (CPA-A) to
derive chlorophyll estimates from remotely sensed ocean color satellite
data (Shuchman et al., 2013). The algorithm takes Remote Sensing Re-
flectance (Rrs) and produces Chlorophyll (Chl), Suspended Mineral
(SM), and Dissolved Organic Compound (DOC) concentrations as out-
put by optimizing a set of non-linear equations that relate component
concentrations to signal spectra using a hydro-optical model. The Rrs
abbreviation is specific to Ocean Color remote sensing, the premise
being that Reflectance, R, can be computed in many different ways
(often denoted in the subscript of R), here we use Remote Sensing
(hence the rs subscript) Reflectance. MODIS Aqua Level 2 data, the stan-
dard atmospherically corrected output available through NASA Ocean
Color Web (Software version 6.5.7, processed in 2012), were used as
input to the algorithm. The CPA Algorithm offers several advantages
over the standard chlorophyll product provided by Ocean Color, includ-
ing a modest gain in retrieval accuracy as well as the production of SM
and DOC concentrations which could also be used with the PCPM inter-
polation. Additionally the CPA-A produces for each 1 km2 pixel, esti-
mates of the light irradiance diffuse attenuation coefficient (Kd),
chromophoric dissolved organic matter (CDOM), and photic zone
depth, water optical parameters, which also could be used with the
PCPM interpolation. Further details about the validation and use of the
CPA-A Algorithm in the Great Lakes Region can be found in Shuchman
et al. (2013) and Fahnenstiel et al. (2016).

The standardMODIS level 2 images include a set of outputflags indi-
cating conditions at each pixel. These flags were used to exclude land
pixels (LAND), cloud/ice pixels (CLDICE), high-sensor view zenith
angle (HISATZEN) and pixels likely containing straylight (STRAYLIGHT)
contamination from nearby clouds or from the shoreline. While exclud-
ing straylight contaminated pixels results in a considerable loss of ob-
servable lake surface (~6%), predominantly in the nearshore area, the
chlorophyll estimates suffer under such conditions and so their elimina-
tion is a net positive to the quality of the final result. The number of
pixels rejected from HISATZEN is variable scene-to-scene as this flag
simply removes the edges of eachMODIS swathwhere long atmospher-
ic path lengths are present (i.e. imperfect atmospheric correction), thus
if part of the lake is in this region those corresponding pixels are re-
moved. The number of pixels rejected by CLDICE is highly variable on
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short time scales (days) due to rapidly changing weather patterns and
ice conditions in the Great Lakes region, but is generally consistent
with the 50–60% average overwater cloudiness during the April–Octo-
ber period reported by Ackerman et al. (2013).

Hydrodynamic modeling

The hydrodynamic model used in this study is FVCOM (Finite Vol-
ume Community Ocean Model) (Chen et al., 2006). FVCOM is an un-
structured-grid, finite-volume, three-dimensional (3-D) primitive
equation ocean model with a generalized, terrain-following coordinate
system in the vertical and a triangular mesh in the horizontal. The un-
structured grid can bedesigned to provide a customized variable resolu-
tion to both coastline and bathymetry. FVCOM has been used in
numerous applications to estuaries, coastal oceans, and the Great
Lakes (Xue et al., 2009; Anderson and Schwab, 2013; Xue et al., 2015;
Xue et al., 2017). The Lake Superior FVCOM model is configured with
a very high horizontal resolution of ~100maround islands and complex
shoreline features, a medium resolution of 200–500 m along the rest of
the coast and nearshore region, and a moderate resolution of ~2 km in
offshore areas, resulting in a total of ~65,000 model elements (Fig. 1a).
Each model element uses 40 evenly spaced vertical sigma-coordinate
Fig. 1. Hydrodynamic model grid a
layers with a vertical resolution of b1 m in the coastal region and 2–
5 m offshore.

The surface boundary condition of FVCOM consists of momentum
and heat flux at each surface mesh element. The momentum and heat
fluxes are calculated internally in FVCOM using surface meteorological
data from the Climate Forecast System Reanalysis (CFSR, NCAR, 2015)
and the internally calculated water temperature. As a global, high reso-
lution, coupled atmosphere-ocean-land surface-sea ice system, the
CFSR was designed to provide the best estimate of the state of these
coupled domains by including: (1) coupling of atmosphere and ocean
during the generation of the 6 h guess field, (2) an interactive sea-ice
model, and (3) assimilation of satellite radiances by the Grid-point Sta-
tistical Interpolation scheme and all available conventional and satellite
observations. Preliminary analysis of the CFSR output indicates a prod-
uct far superior in most respects to the reanalysis of the mid-1990s
(Saha et al., 2010).

The CFSR meteorological output is used as the physical forcing for
Lake Superior FVCOM model. The CFSR forcing is retrieved at hourly
temporal resolution and ~20 km horizontal resolution from the gridded
reanalysis data. The hydrodynamic simulation driven by CFSR forcing
for Lake Superior was shown to provide robust simulations of the circu-
lation patterns and thermal structure, mainly due to its accurate
nd particle initial distribution.
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representation of wind pattern and radiation fields (Xue et al., 2015).
With a focus on spatial and temporal estimates of chlorophyll fields,
the model is applied to Lake Superior for the ice-free seasons of 2002–
2013. The model configuration follows Xue et al. (2015). Each year be-
ginswith a 1-month spin-up starting onMarch 1 and runs continuously
to December 31.

Calculation of chlorophyll fields

Spatially and temporally continuous chlorophyll fields are calculated
from discontinuous satellite estimates using a new Lagrangian particle-
tracing technique for coupling hydrodynamic and biogeochemical
models called the property-carrying particle model (PCPM). In this
method, tracer particles are initially randomly distributed throughout
the computational domain of the hydrodynamicmodel. For the Lake Su-
perior application, a particle density of 1.2 particles/km2 was chosen
resulting in 100,000 total particles. An initial chlorophyll concentration
of 0.6 μg/L on April 1st of each simulation year is assigned to particles,
which are distributed randomly in the horizontal and throughout the
upper 20 m water column (Fig. 1b). In the Lake Superior model, parti-
cles are not allowed to leave the computational domain so the total
number of particles remains constant. Particle trajectories are then
computed based on 3-D currents computed by the hydrodynamic
model. The Lagrangian particle tracking module consists of solving a
nonlinear system of ordinary differential equations as follows

dx
dt

¼ A x; tð Þ þ B x; tð Þξ tð Þ ð2Þ

where x is the particle position at a time t, dxdt is the rate of change of the
particle position in time, which is primarily controlled by the 3-dimen-
sional deterministic velocity field, A, generated by themodel. A random
walk-type process has also been added into the 3-D Lagrangian tracking
to simulate subgrid-scale turbulent variability in the velocity field rep-
resented by stochastic vector B with random number ξ, following
Visser (1997) and Huret et al. (2007). This equation is solved by the ex-
plicit Runge-Kutta multi-step methods. In this version, we have opti-
mized the computational scheme by improving the algorithm for
identifying the mesh element which contains a particular particle loca-
tion. The particle locations are re-initialized on April 1st of each year
from 2002–2013, and the hourly locations of the particles are stored
for use by PCPM. During the simulation, the particle coverage and den-
sitywere checked and verified, and noproblemswith undersampled re-
gions or particle accumulations were found. We do not foresee
problems using this technique for longer simulations without re-initial-
ization of the particle position. The PCPM model was re-initialized be-
cause we could not run the model for wintertime because a sufficient
number of quality satellite imageswere not available (as in thefirst par-
agraph of results section). Therefore, it is not necessary to conduct win-
ter hydrodynamic simulation. Instead, we follow Xue et al. (2015) to
simulate the ice-free season andonly conduct PCPM fromApril–October
(see justification in the first paragraph of results section).

After the particle trajectories have been calculated (based on the hy-
drodynamic model grid) and stored, the PCPM employs its own grid
system, which is independent of the hydrodynamic model grid. The
PCPM grid cells are used only to find the local average chlorophyll con-
centration from the particles contained within that cell and to transfer
information from satellite imagery back to the particles by assimilation.
This feature allows PCPM touse a grid resolution appropriate for the sat-
ellite data being analyzed, and also allows PCPM to use a more efficient
rectilinear grid, even if the particle trajectories were computed from
currents on an unstructured grid. For Lake Superior, PCPM uses a 2 × 2
km grid in the horizontal and 10 sigma layers in the vertical for the
model domain. Satellite-derived chlorophyll values are interpolated to
the PCPM surface layer grid for each available satellite image.
In PCPM, each particle carries a chlorophyll concentrationwhich can
change in time. In this application, the evolution of the chlorophyll con-
centration field is mainly treated as a passive tracer in the hydrodynam-
ic flow field. However, the chlorophyll concentration is dynamically
adjusted by assimilation to “nudge” it closer to the satellite estimates
at times and locationswhere imagery is available. The result is a spatial-
ly and temporally continuous estimate of the chlorophyll concentration
field.

The sequence of operations for each time step in PCPM is as follows:

1. Read particle locations (x, y, z) for all tracer particles at this time step.
Locations are pre-computed based on currents from a hydrodynamic
model.

2. Determine the PCPM cell for each particle.
3. Calculate PCPM cell-based average of each property. If no particles

are present in a particular cell, use the value from the previous
time step.

4. Adjust the concentrations of particles within each cell by nudging to-
ward satellite-derived values.

5. Calculate new cell-based average properties for cells containing at
least one particle.

6. (Optional) Redistribute cell-based properties to particleswithin each
cell by replacing the particle-based property with a weighted aver-
age of the particle-based property and the new cell-based property.

7. Save gridded PCPM concentration field.

In step 4, the concentration of particles in each hydrodynamic grid
cell is adjusted at each time step (typically 1 h) to “nudge” the concen-
tration values toward the nearest (in time) satellite-derived value for
that cell. The nudging term at time t is:

ΔC ¼ α Cs−C tð Þð Þ ð3Þ

where ΔC is the change in concentration to be applied to C(t). Cs is the
remote sensing concentration linearly interpolated to time t from
(p)revious and (n)ext. images:

Cs ¼
tn−tð ÞCp þ t−tp

� �
Cn

tn−tp
� � ð4Þ

where tn is the time of the next satellite-derived value Cn, and tp is the
time of the previous satellite-derived value Cp. The nudging factor α is:

α ¼ α0 max e
− tp−t

t0

� �2

; e
− tn−t

t0

� �20
@

1
A ð5Þ

where t0 is an adjustable time scaling coefficient and α0 is an adjustable
nudging between 0 and 1. The smaller the value of t0, the shorter the
time that an individual satellite image influences the calculation. The
larger the value of α0, the more strongly the simulated concentration
value is steered toward the satellite-derived value. In this study, α0 =
0.5 and t0 = 24 h were used in our standard model simulation, which
provided reasonably smooth results. The time window was chosen to
be representative of the amount of time it would take a particle to tra-
verse several grid cells (2–5 km) when moving at a typical (2–5 cm/s)
current speed. Such a time window is also validated by our
decorrelation time scale analysis shown in the later section. We also
found that results were not very sensitive to the choice of t0 and α0

within a reasonable range, as shown later in our sensitivity analysis.
This procedure is carried out for each year (2002−2013) with an hour-
ly time step so that at the end of the simulation there are hourly esti-
mates of chlorophyll concentration for each PCPM grid cell.



Table 1
Total days in each month (2002–2013) when MODIS data available.

Total days that have MODIS data in

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2002 0 0 0 0 0 0 27 30 28 21 13 17
2003 22 10 14 19 27 33 31 37 26 26 13 24
2004 9 14 21 26 31 34 31 33 33 18 20 11
2005 20 17 31 28 27 35 41 36 25 24 10 8
2006 16 23 28 26 22 34 39 40 33 18 15 21
2007 9 19 24 26 25 35 38 41 22 26 14 14
2008 10 16 24 14 24 28 34 43 24 28 9 13
2009 12 8 13 25 29 31 33 32 35 18 16 9
2010 22 26 24 24 32 27 40 39 32 27 17 16
2011 13 14 25 22 30 28 35 42 32 30 17 12
2012 16 21 23 33 31 33 37 36 35 20 15 9
2013 14 14 28 25 22 25 31 39 32 19 9 14
Average with
2002

14 15 21 22 25 29 35 37 30 23 14 14

Average
without
2002

15 17 23 24 27 31 35 38 30 23 14 14
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Results

A total of 2648 MODIS images with at least 10 km2 of valid chloro-
phyll retrievals were available during the 8 Oct. 2002–30 Dec. 2013 pe-
riod. The climatological average percent of lake area covered per day
image for each month was calculated by adding the percent area cov-
ered in each image during that month and dividing by 375 (12.5 years
times 30 days). The maximum coverages are near 25% for July and Au-
gust while May, June and September are closer to 15%, with interannual
fluctuations of ±5–7% coverage (Fig. 2a). During the early spring in
April and early fall in October, the coverage is ~10% while during late
fall/winter (November–March) the coverage is below 5% because of in-
creased cloud cover and ice cover. The number of satellite images during
these months is b15 per month (Table 1). Thus, a spatial coverage of
~10% of the lake from each image during the winter period makes the
average image coverage for the entire lake b5%. Due to extremely low
coverage and lower accuracy due to cloud and ice contamination, it is
clear that theMODIS-derived data during theNovember to February pe-
riod needs to be interpreted with caution and more measurements are
needed to validate chlorophyll concentrations during this period of
time. For this reason, we exclude data from November to March (Fig.
2b) and re-initialize the model each year in April.

MODIS-derived chlorophyll concentrations were compared to field
concentrations measured during USEPA monitoring cruises, which are
conducted during spring (mainly in April) and summer (mainly in Au-
gust) each year. MODIS chlorophyll concentrations exhibit a clear sea-
sonal trend. Chlorophyll values increase during the year from a
minimum of about 0.8 μg/L in April, and to a value 1.2 μg/L the late sum-
mer and early fall (Fig. 2b). In Lake Superior, most of the EPA sampling
stations are in the central basin. Overall, good agreementwas found be-
tween EPA and MODIS chlorophyll values as indicated by the scatter
plot of EPA chlorophyll concentrations and MODIS-derived chlorophyll
Fig. 2.Upper Panel (a): Average percent coverage per day ofMODIS CPA chlorophyll retrievals f
by percent coverage) for Lake Superior (April–October), 2002–2013. Crosses indicate average v
concentrations determined from comparisonswithin 24h ofMODIS im-
agery (Fig. 3). The average Chlorophyll value for all EPA samples in the
comparison is 0.84 μg/L while the average MODIS-derived value is
0.98 μg/L. The correlation coefficient is 0.52 and root-mean-square-
error(RMSE) is 0.34 μg/L.

One of the purposes of the interpolation method described in this
paper was to use the information contained in spatially and temporally
sporadic satellite retrievals to produce a spatially and temporally con-
tinuous estimate of chlorophyll concentrations in Lake Superior. The
surface chlorophyll fields produced by the interpolation algorithm
were used to calculate lake wide and basin-specific climatology of
or Lake Superior, 2002–2013. Lower Panel (b): AverageMODIS CPA chlorophyll (weighted
alues from EPA spring and summer cruises.



Fig. 3. Observed Lake Superior Chlorophyll from EPA cruises vs. CPA-derived chlorophyll from near coincident (within 24 h) MODIS images. Line is 1:1.
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monthly average chlorophyll values (Fig. 4). The lake wide climatologi-
cal values ofmonthly average of chlorophyll are similar to the values de-
rived directly from the cruise data for both spring and summer, with
relatively larger interannual variability during the fall season. We have
also plotted the climatology of monthly average chlorophyll values
separately for each of the three Lake Superior basins in Fig. 4. The
three basins follow a similar seasonal cycle to the lake wide average
with a continual increase in chlorophyll from April to late summer
and early fall. The chlorophyll value in the western basin is consistently
higher than the lake average by ~0.1 μg/L. The central basin shows a
Fig. 4. Climatological value of lakewide average of PCPM interpolated chlorophyll values by m
interannual variability of lakewide average of Chlorophyll values is indicated by standard devi
chlorophyll value lower than lake average by the same amount in the
early part of the year while the chlorophyll value in the eastern basin
is lower than the lake average after July.

Using our PCPMmodel, interpolated chlorophyll concentrations can
be compared to all individual EPA station chlorophyll concentrations
whether they are near coincident (within 24 h) with MODIS images
available (89 stations, referred to as NCS stations) or not (another 203
stations). The average Chlorophyll value for all EPA samples in the com-
parison is 0.89 μg/L and the average value using ourmethod is 0.92 μg/L.
Notice that the direct comparison of MODIS and the 89 NCS stations
onth. Circles and Crosses indicate average EPA values for spring and summer cruises. The
ation (black vertical bars).
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shows a correlation of 0.52 with a RMSE of 0.34 μg/L (Fig. 3), while the
estimates using our approach show even higher correlation with EPA
cruise data at the 89 NCS stations with a correlation coefficient of 0.62
with a RMSE of 0.25 μg/L (Fig. 5). Given the errors associated with
field sampling in near surface regions andwith remote sensed variables
on slightly different temporal (hours) and spatial (surface andmeters to
kilometers), correlations between these type of measurements of 0.5–
0.6 are considered good (Fahnenstiel et al., 2016). It is important to
note that in most of the EPA cruise cases (203 out of 292), there was
not a MODIS-derived value available within 24 h as the EPA sample.
Even in these cases, the correlation between the estimates derived
from our approach and the EPA cruise data is still 0.48 with a RMSE of
0.31 μg/L. The correlation between all (292) EPA sampling values and
our estimates at the stations is 0.50 with a RMSE of 0.30 μg/L (Fig. 5).
Both of these comparisons show a similar level of correlation strength
and RMSE compared to direct correlation (0.52 RMSE of 0.34 μg/L) be-
tween MODIS-derived value and the EPA cruise data at 89 NCS stations
(i.e. these differences are not statistically significant). This suggests that
results from our approach are very reasonable in producing continuous
spatiotemporal estimates of surface chlorophyll concentrations using
the PCPM model for interpolation.

The spatial variation in interpolated chlorophyll concentrations for
different seasons is illustrated in Fig. 6. Themaps show relatively higher
chlorophyll concentration in the southern nearshore regions and em-
bayments of thewestern and eastern basins during April–June (Spring),
particularly in Duluth Bay, Whitefish Bay and the southern coasts of the
western basin with a chlorophyll anomaly ~1 μg/L higher than the lake-
mean value. Also, along the northern coasts, higher chlorophyll concen-
trationswere found in Thunder Bay. In contrast, the chlorophyll concen-
tration in the offshore waters remains relatively low in all three basins
of Lake Superior. In July–September (summer), the patterns are quite
similar in Duluth Bay and Thunder Bay, characterizedwithmuch higher
chlorophyll concentration. The chlorophyll concentration in Whitefish
Bay is still higher than offshore water but lower than that in the other
bays. A noticeable difference between spring and summer is higher
chlorophyll concentration along the southern coasts of the western
Fig. 5.Observed Lake Superior chlorophyll from EPA cruises vs. chlorophyll estimated from PCPM
coincident (within 24 h)MODIS images available (referred to as NCS stations using open circles
images available, with total 292 stations (TS). Solid line is 1:1 line.
basin, where the chlorophyll concentration becomes quite low during
summer time in comparison to spring (e.g. Keweenaw coast). Although
the chlorophyll concentration in offshore water is generally low, the
northern central basin shows a relatively higher concentration during
summer in comparison to spring. For the fall seasons, relatively higher
values of chlorophyll are again seen in the southwest part of thewestern
basin and the embayments, but with somewhat lower spatial gradients.

The mean annual chlorophyll concentrations for specific regions of
the lake during the 2002–2013 period are presented in Fig. 7. The lake
wide mean varies between 0.8 μg/L and 1.0 μg/L during the simulated
period of time with a slight increasing trend of 0.005 μg/yr, however,
the P-value of 0.576 (≫0.05), suggests the rate is not statistically signif-
icant and there is no clear increasing or decreasing trend in lake wide
mean concentration. On the other hand, the chlorophyll concentrations
in the embayment waters showmuch higher inter-annual variability. In
the Duluth Bay, the chlorophyll concentration varies between 1.4 μg/L–
1.8 μg/L with a much higher mean value of 1.6 μg/L, representing the
highest chlorophyll concentration in Lake Superior. The chlorophyll
concentration in Thunder Bay, Whitefish Bay and the southern coasts
of the western basin are also higher than in offshore waters, but there
was no clear time correlation of the inter-annual pattern among these
embayment waters.

As an example of the analysis that can be performed on the continu-
ous spatio-temporal estimates, which would be difficult or impossible
with the raw satellite images, we calculated the autocorrelation func-
tion at each grid square in the interpolated images for each year with
data from April–October (2003−2013). The autocorrelation function
gives an indication of the persistence of a value in time. It has a value
of 1 for a time lag of 0 and generally falls off with increasing time lag.
The decorrelation time is usually defined as the time lag at which the
autocorrelation function falls below 1/e (=0.368). Fig. 8 is a map of
the average decorrelation time scale from the 11 years with data of
April–October. It shows areas ofmore persistence (N10days) in the cen-
ter of the central basin and in the embayments. There is lower persis-
tence (more variability) in a 15–20 km band around the Keweenaw
Peninsula of the western basin, at the northern coast of the central
interpolated approach for 2007–2013. There are 89 EPA sampling stations that have near
) and 203 other stations (OS indicated with crosses) that have not near coincident MODIS



Fig. 6. Chlorophyll concentration anomalies from PCPM estimation.
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basin, and in the entire eastern basin. This map should be interpreted in
conjunction with Fig. 6 since high variability in areas of low average
chlorophyll concentration may not be as important as high variability
in areas of high chlorophyll concentration.

Fig. 9 is a graph of the fraction of the lake surface for which the
decorrelation time exceeds a particular value. It shows that the
decorrelation time is longer than 5 days in nearly the entire lake, but
70% of the lake has decorrelation time scale between5 and 10days, con-
sistent with phytoplankton growth rates (Fahnenstiel et al., 2000). In
b25% of the lake, the decorrelation time scale exceeds 10 days, which
is indicative of weaker flow and resulting longer residence time in
those areas. Thus, satellite images may not realistically characterize
lake conditions after 10 days. Based on the 11 year autocorrelation
analysis, satellite retrievals of Lake Superior water quality parameters
are representative of actual water conditions for approximately a
week±3 days,with the exception of a fewnearshore areas. To examine
the sensitivity of the decorrelation time scale to the choice of the nudg-
ing parameter, we repeated the PCPM simulation with other different
nudging coefficients α0 = 0.1, 0.2 and 1 and t0 = 12 h, 36 h, 48 h (Fig.
9). The estimated decorrelation time scale showed no significant
change. This provides us with some confidence that the estimated
decorrelation time scale is a robust dynamic feature and not a parame-
ter-dependent artifact.

To assess the impact of the hydrodynamic transport on chlorophyll
distribution, we conducted a second experiment (here referred to as
Ex#2) in which the particles stay fixed at their initial position. In other



Fig. 7. Lakewide annualmean chlorophyll with PCPM interpolated approach. Crosses are averages fromEPA spring and summer cruises for each year. Chlorophyll estimates for Duluth bay
and average of Thunder Bay (TB), Whitefish Bay (WB) and South Coast (SC) of the western basin are also presented. Open circles are averages from PCPM interpolated estimates at same
locations as EPA data in spring and summer.
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words, the chlorophyll field is updated based only on satellite data,
without advection from the hydrodynamicmodel. Fig. 10 shows the dif-
ference in chlorophyll spatial pattern estimated from standard PCPM
simulation (here referred to as reference experiment) and Ex#2. Results
show that the major differences occur in the coastal waters, where
coastal currents are much stronger in comparison to weaker offshore
currents (Fig. 15 in Xue et al., 2015). During spring and summer, the
largest differences occur on the south coast in the western basin from
Duluth Bay through theKeweenawPeninsula aswell as in theWhitefish
Bay on the eastern coast and Thunder Bay on the northern coast. For ex-
ample, increased chlorophyll concentration is observed near the coast in
Fig. 8.Map of average decorrelation time scale
Duluth Bay in the standard PCPM simulation along with the decreased
concentration in offshore water within the bay, which reflects the fine
scale aggregation and redistribution of chlorophyll influenced by the
coastal jet transport. A similar influence of coastal currents on chloro-
phyll concentration is clearly shown in other coastal waters. During
the fall season, the general spatial pattern of the difference in chloro-
phyll concentration between the two experiments is similar with a larg-
er difference observed in the central basin in comparison to the spring
and summer cases. As expected, there are no significant changes in
the mid-lake due to the lower impact of weaker offshore water flow
and large, direct influence from nudging of the satellite image.
for the April–October period, 2003–2013.



Fig. 9. Fraction of Lake Superior surface area which exceeds a given decorrelation time scale, sensitivity analysis is conducted with various nudging coefficients.
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Unfortunately, because there are no observational data available for us
to quantitatively evaluate the model performance in coastal waters,
we cannot definitively demonstrate the improvement in the PCPM
model with advection over the case with no advection, but the differ-
ences observed in the two experiments do serve to reflect the impor-
tance of hydrodynamics on the spatio-temporal distribution of
biological parameters in the coastal region.

Discussion and conclusions

Model novelty

In this paper, we describe a novel method for providing objective
estimates of spatially and temporally continuous distribution of a satel-
lite-derived water property with an application to the estimates of
chlorophyll concentration in Lake Superior. The novelty of this new
technique lies in its integration of hydrodynamic effects via the proper-
ty-carrying particle tracking model and Eulerian concentration
remapping approach, which allow the model to reconstruct continuous
spatial fields with extremely high flexibility and efficiency consistent
with hydrodynamic constraints. Compared to traditional objective
mapping, a significant advantage is that our method allows the contin-
uous dynamic evolution of the fields over time driven by hydrodynamic
conditions to resolve the transport and mixing processes. This is
extremely important in the regions characterized by strong currents
and short residence time as biological properties may be dominated
by advective transport rather than local biogeochemical processes.
Many studies (see Xue et al., 2017 have demonstrated that the 1-D
vertical processes (primarily mixing and eddy diffusivity) are insuffi-
cient to characterize the hydrodynamic conditions of the Great Lakes
and horizontal transport must be resolved due to their sea-like charac-
teristics. In addition, the traditional mapping scheme is generally not
able to determine the distribution pattern on the local scale as it mainly
relies on the interpolation of observations, while the particle tracking
program allows for representation of much smaller dynamic scales
such as steep gradients at fronts.

Our approach offers significant improvements over traditional trac-
er-based modeling approaches. Compared to the traditional tracer-
based model that could have been used to resolve the effect of water
transport andmixing on the chlorophyll concentration, PCPM is simpler
to implement (no need to solve the concentration equation on the
hydrodynamic grid) and more efficient (can use its own rectilinear
grid system, independent of the hydrodynamic grid). For example, the
12-year (2002–2013) hydrodynamic simulation takes 20 days to
complete using 64 CPUs; in the second step, the particle tracking
model used to generate the particle trajectories takes ~96 h using 64
CPUs; however, in step 3, the PCPM can complete its 12-year simulation
using the particle trajectories as inputwithin 30min using a single CPU.
Note that Step 1 (hydrodynamic simulation) and step 2 (the particle
trajectory generations) will be run only once regardless of property's
concentration because the hydrodynamics and associated water
transport and mixing (represented by the hundreds of thousands of
particle trajectories) are not affected by biochemical properties (in
this case, chlorophyll fields). In other words, we only need to run the
step 3-PCPM offline with necessary modifications for different sets
of parameters and property configurations. This would be extremely
useful, for instance, if one conducts Monte-Carlo types of simulations,
or wants to simulate other property fields (e.g. contaminant spill,
phosphorus concentration etc.) using only 30 min per run. Such a high
level of efficiency is not available from tracer-based models because
one will have to re-run the tracer-tracking model (similar to our step
2) for any change in parameter configuration or estimation of different
property concentration. Furthermore, our model converts the particle
properties back to an Eulerian grid mesh, which significantly reduces
the required particle numbers and avoids any singularity of the
estimated fields.

More importantly, the integration of Lagrangian and Eulerian ap-
proaches allows a very natural coupling of mass transport (represent
by particle movements and random walk) and biological processes in
water columns, which can often be described by a common vertical 1-
D biological model (e.g. Nutrient-Plankton-Zooplankton-Detritus
model). In this study, the sinks and sources of chlorophyll are implicitly
represented by the assimilation of the satellite imagery. Our next goal is
to use the same PCPM particle-tracking framework for spatial and tem-
poral interpolation of satellite images, to couple with a 1-DNPZDmodel
for each grid-based water column and form a 3-D biological model. We



Fig. 10. The difference in chlorophyll spatial pattern between the standard PCPM simulation (i.e. reference experiment) and Ex#2.
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expect the PCPM model to be far more efficient than traditional tracer-
based Eulerian bio-physical models for 3-D simulation for the same rea-
son discussed above.

Lake Superior chlorophyll pattern and associated hydrodynamic constraints

An important characteristic revealed from the analysis is the season-
ally-dependent chlorophyll concentration,which is consistentwith sea-
sonal hydrodynamic conditions in Lake Superior (Chen et al., 2001; Xue
et al., 2015). The western basin is known for earlier spring warming
compared to other basins, so the biological productivity in Duluth Bay
and the southern coasts in the western basin starts earlier than in
other regions. During spring, the coastal currents have not fully devel-
oped near the southern coast due to easterly wind and homogeneous
water temperature. This allows the high chlorophyll concentration to
temporarily persist along the southern coasts in thewestern basin. Dur-
ing the summer time, the chlorophyll concentration continues to in-
crease in the embayments while the concentration near the southern
coasts become much lower, which is associated with the formation
and intensification of the coastal jet current (Chen et al., 2001). In sum-
mer, southwesterlywinds prevail along the southern coasts of thewest-
ern basin, which favors the development of longshore currents. In
addition, the strongest spatial thermal gradients form near the
KeweenawPeninsula and the density-driven flow intensifies the coastal
jet currents (Beletsky et al., 1999; Xue et al., 2015). These hydrodynamic
changes cause exceptionally strong mass transport and low residence
time, resulting in low chlorophyll concentration in this region compared
to spring.
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While EPA cruise data are primarily designed to sample the off-
shore water, our model provides new insights in the observational
sampling design. Our estimates of the long-term spatial distribution
of chlorophyll concentration show that there are no significant
differences in magnitude and trend in three basins, similar to the
findings reported by Fahnenstiel et al. (2016). Furthermore, our
analyses suggest the necessity for enhanced sampling in the embay-
ments and coastal waters, where the chlorophyll concentration is
considerably higher than the lake wide average (up to 80%) Without
adding extra cost, moving a few sampling locations from offshore
water to embayments and southern coastal regions can provide
more accurate characterization of the spatial pattern of chlorophyll
concentration in Lake Superior.

Lake Superior chlorophyll temporal trend and associated ecological
significance

Our new lake-wide annual chlorophyll concentrations based on the
particle tracking approach are similar to those determined from similar
remote sensing algorithms for the 2010–2013 period, and provide some
confidence for our results. Fahnenstiel et al. (2016) reported a mean
lake-wide chlorophyll concentration of 0.99 μg/L, which compares fa-
vorably to our mean of 0.97 μg/L for the same period.

Lake Superior chlorophyll concentrations do not appear to have
changed significantly over the past 12 years, and only slightly or not
at all over the last ~50 years. Based on our analysis, annual lake-wide
chlorophyll concentrations averaged 0.8–1.0 μg/L in 2003–2013
with overall mean of 0.94 μg/L and offshore or open water concentra-
tions averaged 0.92 μg/L during this same period (Fig. 7). In a review
of phytoplankton biomass concentrations in the Great Lakes prior
to 1974, Vollenweider et al. (1974) reported that open lake concentra-
tions in Lake Superior were b1 μg/L and nearshore values were higher.
Schelske and Roth (1973) reported a mean concentrations of
chlorophyll a in the open lake region of Lake Superior to be 0.7 μg/L in
1970 which is similar to the offshore concentrations in 1980/81
reported by Nalewajko and Voltolina (1986). In a lake-wide sampling
(114–144 stations per cruise) of Lake Superior during six cruises
(May–November) in 1973,Watson et al. (1975) reported ameanannual
chlorophyll a concentration for Lake Superior of 1.1 μg/L. Given the
variability associated with these historical samplings and the relative
similarity among historical values, it is reasonable to suggest that lake
wide chlorophyll concentrations have changed very little in Lake
Superior over the last ~50 years.

The similarity of chlorophyll concentrations in Lake Superior over
the last 15 years is in marked contrast to the trends that have been
observed in lakes Huron and Michigan. In lakes Michigan and
Huron large changes in chlorophyll concentrations and many other
water quality parameters have been noted in the past 15 years or
so. Winter/spring chlorophyll concentrations have decreased from
30 to 75% in the last 15–20 years in lakes Michigan and Huron
(Fahnenstiel et al., 2010; Barbiero et al., 2011; Warner and Lesht,
2015). These chlorophyll decreases were accompanied by decreases
in diatom production and total phosphorus concentrations with the
result that chlorophyll and phosphorus concentrations are now rela-
tively similar among all three of the Upper Great Lakes (Mida et al.,
2010; Barbiero et al., 2012). Moreover, the changes in lakes Huron
and Michigan chlorophyll concentration likely extend back into the
early 1970s as Fahnenstiel et al. (2016) noted that lakes Huron and
Michigan chlorophyll in 2010–2013 has decreased over 50% from
early 1970 values.

The large changes in chlorophyll concentrations in lakes Huron and
Michigan during the past 15 years or so are most likely due to the filter-
ing activities of invasive mussels (Fahnenstiel et al., 2010; Mida et al.,
2010; Kerfoot et al., 2010; Vanderploeg et al., 2010; Evans et al., 2011;
Yousef et al., 2014; Rowe et al., 2015), although other factors (phospho-
rus and climate change) may play a role (Warner and Lesht, 2015).
Large populations of dreissenid mussels, particularly Dreissenia
rostriformis bugenis, became established in the Upper Great Lakes in
the 2000s (Nalepa et al., 2010) and their high abundances and filtering
rates have been related to significant declines in chorophyll concentra-
tions in Lake Michigan (Fahnenstiel et al., 2010; Vanderploeg et al.,
2010; Rowe et al., 2014). Also, phosphorus is the limiting nutrient in
the Upper Great Lakes and concentrations of chlorophyll have been re-
lated to phosphorus concentrations (Schelske et al., 1974; Scavia et al.,
1986). Phosphorus load reductions were initiated in the Great Lakes in
the 1970s with the result that loading has decreased in the Great lakes
over the last 30 years (Dolan and Chapra, 2012) and these decreases
may have affected chlorophyll concentrations (Warner and Lesht,
2015). Finally, in the past few decades, climate change has altered
Great Lakes water temperatures and lengthened the period of thermal
stratification (McCormick and Fahnenstiel, 1999; Austin and Colman,
2007). Climate change has been suggested as an important factor in re-
surgence of cyanobacteria blooms in western Lake Erie (Michalak et al.,
2013) and possibly in controlling chlorophyll concentrations in lakes
Huron and Michigan (Warner and Lesht, 2015).

The difference in chlorophyll trends among the Upper Great Lakes
during the past 15 years reflects the relative role of these stressors,
dreissenid mussels and nutrient loading in each lake. In contrast to
lakes Huron andMichigan, dreissenidmussels and changes in phospho-
rus loads have likely not impacted the Lake Superior ecosystem, and are
consistent with the lack of a chlorophyll trend in the past 15 years. Lake
Superior, unlike lakes Huron and Michigan, has very few dreissenid
mussels (Grigorovich et al., 2008) an observation which has been relat-
ed to the low calcium concentrations in the lake (Grigorovich et al.,
2003). Moreover, phosphorus loadings have not changed in Lake Supe-
rior for the period 1980–2010, whereas loadings have decreased be-
tween 17 and 40% in lakes Michigan and Huron over the same period
(Dolan and Chapra, 2012). The lack of mussels and no change in phos-
phorus loading should produce relatively similar chlorophyll concentra-
tions over the last 15 years and possibly longer, and this is what we
observed.

Climate change is another factor that might affect chlorophyll
concentrations in the Great Lakes (O'Reilly et al., 2015; Warner and
Lesht, 2015), although the exact mechanism may be unclear. Climate
change can affect chlorophyll concentrations through a variety ofmech-
anisms including the length and intensity of thermal stratification,
duration and extent of ice cover, and frequency and intensity of storms
(Michalak et al., 2013; Scavia et al., 1986; Shimoda et al., 2011). Because
the climate is changing in the Lake Superior region (McCormick and
Fahnenstiel, 1999; Austin and Colman, 2007) there is the potential for
significant effects on chlorophyll concentrations. Fahnenstiel et al.
(2016) noted a relationship between summer temperatures and
summer phytoplankton productivity in Lake Superior for the period
2010–2013. On an annual basis, we did not detect a statically significant
change in Lake Superior annual temperature (GLSEA data) or chloro-
phyll concentrations for the period of 2002–2013. The lack of trends in
either variable found in this study should not be used as an indicator
of no climate effect. Rather, our limited observation period (12 years),
and limited analysis (annual chlorophyll and temperature only) may
have masked more subtle effects. Because Lake Superior is sensitive to
temperature change (i.e., ice cover, limited period of thermal stratifica-
tion, etc.), future studies on the relationships between climate and phy-
toplankton abundance should be encouraged.
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