An integrated hydrodynamic and sediment transport model was applied to Saginaw Bay for the ice-free portions of 2009 and 2010. Observations of surface waves and suspended sediment concentration made during the spring of both years were used to constrain the model and to validate the model output. The results show that sediment resuspension in both the inner and outer bay is due almost entirely to surface wave action, and that the bulk of the resuspension events occur during the fall of each year. Although the model accurately predicted the occurrence of resuspension events, it did not always accurately simulate the amount of material resuspended. Because resuspension mixes bottom sediment into the water column and makes it and associated nutrients available to the biota, the effects of sediment resuspension need to be accounted for in any water quality model of the bay. Better specification of both the surface waves and the initial specification of the bottom sediment would probably improve the performance of the model.
Recent Posts
Archives
- September 2023
- August 2023
- May 2023
- April 2023
- March 2023
- February 2023
- December 2022
- November 2022
- October 2022
- July 2022
- May 2022
- April 2022
- March 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- April 2021
- January 2021
- December 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- April 2020
- February 2020
- January 2020
- December 2019
- November 2019
- October 2019
- September 2019
- July 2019
- June 2019
- May 2019
- April 2019
- March 2019
- February 2019
- January 2019
- December 2018
- November 2018
- October 2018
- September 2018
- August 2018
- June 2018
- April 2018
- March 2018
- February 2018
- January 2018
- December 2017
- November 2017
- October 2017
- September 2017
- August 2017
- July 2017
- June 2017
- March 2017
- January 2017
- December 2016
- October 2016
- September 2016
- July 2016
- June 2016
- May 2016
- January 2016
- October 2015
- August 2015
- May 2015
- January 2015